Nothing
#' @title Receiver Operating Characteristic (ROC)
#'
#' @description Receiver Operating Characteristic Curve is a plot of the true positive rate (TPR)
#' against the false positive rate (FPR) for the different thresholds.
#' It is useful for measuring and comparing the accuracy of the classificators.
#'
#' @param object An object of class \code{auditor_model_evaluation} created with \code{\link{model_evaluation}} function.
#' @param ... Other \code{auditor_model_evaluation} objects to be plotted together.
#' @param nlabel Number of cutoff points to show on the plot. Default is \code{NULL}.
#'
#' @seealso \code{\link{plot_rroc}, \link{plot_rec}}
#'
#' @return A ggplot object.
#'
#' @examples
#' data(titanic_imputed, package = "DALEX")
#'
#' # fit a model
#' model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)
#'
#' # use DALEX package to wrap up a model into explainer
#' glm_audit <- audit(model_glm,
#' data = titanic_imputed,
#' y = titanic_imputed$survived)
#'
#' # validate a model with auditor
#' eva_glm <- model_evaluation(glm_audit)
#'
#' # plot results
#' plot_roc(eva_glm)
#' plot(eva_glm)
#'
#' #add second model
#' model_glm_2 <- glm(survived ~ .-age, family = binomial, data = titanic_imputed)
#' glm_audit_2 <- audit(model_glm_2,
#' data = titanic_imputed,
#' y = titanic_imputed$survived,
#' label = "glm2")
#' eva_glm_2 <- model_evaluation(glm_audit_2)
#'
#' plot_roc(eva_glm, eva_glm_2)
#' plot(eva_glm, eva_glm_2)
#'
#' @rdname plot_roc
#' @export
plot_roc <- function(object, ..., nlabel = NULL) {
`_label_` <- `_fpr_` <- `_tpr_` <- ord <- `_cutoffs_` <- NULL
# check if passed object is of class "modelResiduals" or "modelAudit"
check_object(object, type = "eva")
# prepare data frame for the ggplot object
df <- as.data.frame(object)
for (resp in list(...)) {
resp <- as.data.frame(resp)
df <- rbind(df, resp)
}
# if cutoff points should be placed on the chart
n_models <- nlevels(df$`_label_`)
len_model <- nrow(df) / n_models
inds <- c()
if (!is.null(nlabel)) {
inds <- floor(seq(1, len_model, length.out = nlabel))
inds <- as.vector(sapply(1:n_models, function(x) c(inds + (len_model * (x - 1)))))
}
# new varibale to set an order o curves
df$ord <- paste(rev(as.numeric(factor(df$`_label_`))), df$`_label_`)
# colors for model(s)
colours <- rev(theme_drwhy_colors(n_models))
p <- ggplot(data = df, aes(x = `_fpr_`, y = `_tpr_`, color = `_label_`, group = ord)) +
geom_step() +
geom_point(data = df[inds,], show.legend = FALSE) +
geom_text_repel(data = df[inds,], aes(label = format(round(`_cutoffs_`, 2), nsmall = 2)), show.legend = FALSE, size = 3.5)
# theme, colours, titles, axes, scales, etc.
p + theme_drwhy() +
theme(axis.line.x = element_line(color = "#371ea3")) +
scale_color_manual(values = rev(colours), breaks = levels(df$`_label_`), guide = guide_legend(nrow = 1)) +
coord_fixed() +
xlab("False positive fraction") +
ylab("True positive fraction") +
ggtitle("ROC curve")
}
#' @rdname plot_roc
#' @export
plotROC <- function(object, ..., nlabel = NULL) {
warning("Please note that 'plotROC()' is now deprecated, it is better to use 'plot_roc()' instead.")
plot_roc(object, ..., nlabel = nlabel)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.