Nothing
# Function for running PCC Normal with mean unknown
norm1_PCC <- function( data = NULL, historical_data = NULL,
sdl = NULL, mu0 = 0, sd0 = 10^6, alpha_0 = NULL,
ARL_0 = 370.4, FAP = NULL, FIR = FALSE, fFIR = .99,
aFIR = 1/8, summary_list = TRUE, PCC_PLOT = TRUE, PriorPosterior_PLOT = FALSE,
historical_data_PLOT = FALSE, pdf_report = FALSE, path_pdf_report = tempdir(),
xlab = "Observations", ylab = "Quality characteristic Values",
main = "PCC Normal with unknown mean")
{
### Initial checks before procceeding to the main body of function
### Mainly this chunk of code will correspond to invalid general input before running stuff
# 'data' (i) not defined (ii) not in vector (iii) contain non-numeric value
if ( is.null(data) ) {
stop("'data' have not been defined")
} else { if ( any(!is.numeric((unlist(data)))) ) stop("Invalid 'data' input")
if ( !is.vector(data) ) stop("'data' must be in vector form")
}
# 'historical_data' (i) not in vector (ii) contain non-numeric value
if ( !is.null(historical_data) ) {
if ( any(!is.numeric((unlist(historical_data)))) ) stop("Invalid 'historical_data' input")
if ( !is.vector(historical_data) ) stop("'historical data' must be in vector form")
}
# 'ARL_0' (i) non-numeric (ii) negative
if( !is.null(ARL_0) ) {
if ( length(unlist(ARL_0))>1 ) { message("More than one value for 'ARL_0', the first one will only be used")
if ( !is.numeric(ARL_0[1]) | ARL_0<=0 ) { stop("Invalid 'ARL_0' value") } else { ARL_0 <- ARL_0[1] }
} else { if ( !is.numeric(ARL_0) | ARL_0<=0 ) { stop("Invalid 'ARL_0' value") } }
}
# 'FAP' (i) non-numeric (ii) negative
if (!missing(FAP)){
if ( length(unlist(FAP))>1 ) { message("More than one value for 'FAP', the first one will only be used")
if ( !is.numeric(FAP[1]) | FAP<=0 | FAP>=1 ) { stop("Invalid 'FAP' value") } else { FAP <- FAP[1] }
} else { if ( !is.numeric(FAP) | FAP<=0 | FAP>=1 ) { stop("Invalid 'FAP' value") } }
}
# 'FIR' (i) logical (ii) fFIR - aFIR conditions
if ( length(unlist(FIR))>1 ) {
message("More than one value for 'FIR', the first one will only be used")
if ( !is.logical(FIR[1]) ) { stop("Invalid 'FIR' value ; 'FIR' must be logical") } else { FIR <- FIR[1] }
} else {
if ( !is.logical(FIR) ) { stop("Invalid 'FIR' value ; 'FIR' must be logical") }
}
# fFIR - aFIR conditions if FIR
if ( FIR ) {
if ( !missing(fFIR) ) {
if ( length(unlist(fFIR))>1 ) {
message("More than one value for 'fFIR', the first one will only be used")
if ( !is.numeric(fFIR[1]) | fFIR[1]<=0 | fFIR[1]>=1 ) {
stop("Invalid 'fFIR' value")
} else { fFIR <- fFIR[1] }
} else {
if ( !is.numeric(fFIR) | fFIR<=0 | fFIR>=1 ) {
stop("Invalid 'fFIR' value")
}
}
}
if ( !missing(aFIR) ) {
if ( length(unlist(aFIR))>1 ) {
message("More than one value for 'aFIR', the first one will only be used")
if ( !is.numeric(aFIR[1]) | aFIR[1]<=0 ) {
stop("Invalid 'aFIR' value")
} else { aFIR <- aFIR[1] }
} else {
if ( !is.numeric(aFIR) | aFIR<=0 ) {
stop("Invalid 'aFIR' value")
}
}
}
}
### Setting the False Alarm Probability & False Alarm Rate based on the Sidak correction
# data length
N <- length(data)
# If both ARL_0 and FAP chosen
if ( !is.null(ARL_0) & !is.null(FAP) ) {
message("Both ARL_0 and FAP are defined as input, so ARL_0 is used by default. \nIn order to use FAP instead, set ARL_0 = NULL")
FAR <- 1/ARL_0
# If only FAP is chosen
} else if ( is.null(ARL_0) & !is.null(FAP) ) {
FAR <- 1-(1-FAP)^(1/(N-1))
# If only ARL0 is chosen
} else if ( !is.null(ARL_0) & is.null(FAP) ){
FAR <- 1/ARL_0
}
# If FIR PCC is chosen - default value for f=0.99
if ( FIR ) {
tf <- 1:N
Afir <- c(( 1- (1-fFIR)^(1+aFIR*(tf-1)) ) )
FAR <- 1-(1-FAR)*Afir
}
###############################################################
###############################################################
## START (1) Only this bit changes from function to function ##
## In some cases 'data' and 'historical_data' restrictions ##
## change as well at the beginning of the function ##
###############################################################
###############################################################
# Likelihood sd input (i) more than one value for parameters (ii) non-numeric input
if ( is.null(sdl) ) {
stop("Likelihood s.d. 'sdl' has not been defined")
} else {
if ( length(unlist(sdl))>1 ) { message("More than one value for 'sdl', the first one will only be used")
if ( !is.numeric(sdl) | sdl<=0 ) { stop("Invalid 'sdl' value") } else { sdl <- sdl[1] }
} else { if ( !is.numeric(sdl) | sdl<=0 ) { stop("Invalid 'sdl' value") } }
}
# Prior parameter input (i) more than one value for parameters (ii) non-numeric input
if( !missing(mu0) ) {
if ( length(unlist(mu0))>1 ) { message("More than one value for 'mu0', the first one will only be used")
if ( !is.numeric(mu0[1]) ) { stop("Invalid 'mu0' value") } else { mu0 <- mu0[1] }
} else { if ( !is.numeric(mu0) ) { stop("Invalid 'mu0' value") } }
}
if( !missing(sd0) ) {
if ( length(unlist(sd0))>1 ) { message("More than one value for 'sd0', the first one will only be used")
if ( !is.numeric(sd0) | sd0<=0 ) { stop("Invalid 'sd0' value") } else { sd0 <- sd0[1] }
} else { if ( !is.numeric(sd0) | sd0<=0 ) { stop("Invalid 'sd0' value") } }
}
### Main body of function - PCC illustration - USING FAR (or FAP equivelantly)
## Histotic data and processing
if ( !is.null(historical_data) ){
N_historicaldata <- length(historical_data)
# Check about alpha_0
# If no chosen value for alpha_0 use default setting
if (is.null(alpha_0)) { alpha_0 <-1/N_historicaldata
} else {
if ( length(unlist(alpha_0))>1 ) {
message("More than one value for 'alpha_0', the first one will only be used")
if ( !is.numeric(alpha_0) | alpha_0<0 | alpha_0>1) { stop("Invalid 'alpha_0' value")
} else { if ( !is.numeric(alpha_0) | alpha_0<0 | alpha_0>1 ) { stop("Invalid 'alpha_0' value") } }
}
}
# Process historical data
# Power Prior parameters
mu0_PowerP <- ( sdl^2*mu0 + (sd0^2)*alpha_0*sum(historical_data) ) / ( sdl^2 + (sd0^2)*alpha_0*N_historicaldata )
sd0_PowerP <- sqrt( ((sdl^2)*(sd0^2)) / (sdl^2 + (sd0^2)*alpha_0*N_historicaldata) )
# Keep similar notation as input
mu0 <- mu0_PowerP ; sd0 <- sd0_PowerP
}
### PCC implementation
# Sum of observations
dataSum <- cumsum(data)[seq(1,length(data))]
# Posterior distribution parameter
mu0_Post <- ( sdl^2*mu0 + (sd0^2)*dataSum ) / ( sdl^2 + (sd0^2)*(1:N) )
sd_Post <- sqrt( ((sdl^2)*(sd0^2)) / ( sdl^2 + (sd0^2)*(1:N) ) )
# Control limits
if (!FIR) { CL <- t( mapply( function(MP, SDT, FD = FAR) {
hd <- norm_HD( cover = 1-FD, mu = MP, sdv = SDT )
return( c( hd$lower.bound, hd$upper.bound ) )
}, MP = mu0_Post, SDT = sqrt( sd_Post^2 + sdl^2 ) ) )
} else { CL <- t( mapply( function(MP, SDT, FD) {
hd <- norm_HD( cover = 1-FD, mu = MP, sdv = SDT )
return( c( hd$lower.bound, hd$upper.bound ) )
}, MP = mu0_Post, SDT = sqrt( sd_Post^2 + sdl^2 ), FD = FAR ) )
}
CL <- rbind( c(NA, NA), CL )
CL <- CL[-nrow(CL), ]
## Prior Posterior plot
if ( PriorPosterior_PLOT | pdf_report ) {
PP <- data.frame( x = c(
ifelse( mu0 == 0 & sd0 == 10^6, mu0_Post[N] - qnorm(.9999)*sd_Post[N], min( mu0 - qnorm(.9999)*sd0, mu0_Post[N] - qnorm(.9999)*sd_Post[N] ) ),
ifelse( mu0 == 0 & sd0 == 10^6, mu0_Post[N] + qnorm(.9999)*sd_Post[N], max( mu0 + qnorm(.9999)*sd0, mu0_Post[N] + qnorm(.9999)*sd_Post[N] ) ) )
)
PrPostPLOT <-
ggplot( PP, aes( x = c( PP[1, ], PP[2, ] ) ) ) +
stat_function(fun = dnorm, args = list(mean = mu0_Post[N], sd = sd_Post[N]),
aes(colour = "Posterior", linetype = "Posterior"), size = 1) +
{if(mu0 == 0 & sd0 == 10^6) { stat_function(fun = function(x) { dnorm(mu0_Post[N] + qnorm(.99)*sd_Post[N], mean = mu0_Post[N], sd = sd_Post[N]) }, aes(colour = "Prior", linetype = "Prior"), size = 1)
} else { stat_function(fun = dnorm, args = list(mean = mu0, sd = sd0), aes(colour = "Prior", linetype = "Prior"), size = 1) } }+
scale_x_continuous(name = "") +
scale_y_continuous(name = "Density") +
scale_linetype_manual(values = c("solid", "dashed"), guide = "none") +
scale_colour_manual(values = c("#3CB371", "#FF4500"),
labels = c( bquote("Prior: Normal(" ~ theta ~ "|" ~ .(round(mu0, digits = 1)) ~ ", " ~ .(ifelse(sd0 == 10^6, Inf, round(sd0, digits = 1))) ~ ")" ),
bquote("Posterior: Normal(" ~ theta ~ "|" ~ .(round(mu0_Post[N], digits = 1)) ~ ", " ~ .(round(sd_Post[N], digits = 1)) ~ ")" )),
guide = guide_legend(override.aes = list( color = c("#FF4500", "#3CB371"),
linetype = c("dashed", "solid"),
size = c(.5, .5)), title = NULL)) +
ggtitle(expression(atop("PCC Normal likelihood - unknown mean"~theta, "Prior/Posterior distribution"))) +
{if(mu0 == 0 & sd0 == 10^6) {
geom_point( aes(x = mu0_Post[N], y = 0), color = "#3CB371", show.legend = FALSE, shape = 4, size = 3, stroke = 1.5 )
} else { geom_point( aes(x = c(mu0, mu0_Post[N]), y = c(0, 0)), color = c("#FF4500", "#3CB371"), show.legend = FALSE, shape = 4, size = 3, stroke = 1.5 ) } } +
{if(mu0 == 0 & sd0 == 10^6) {
annotate("text", x = mu0_Post[N], y = 0, label = paste(expression(mu[post])), color = "#3CB371", size = 6, parse = TRUE,
vjust = 1.25)
} else {
annotate("text", x = c(mu0, mu0_Post[N]), y = c(0, 0), label = paste(expression(mu[prior], mu[post])),
color = c("#FF4500", "#3CB371"), size = 6, parse = TRUE, vjust = 1.25)
} } +
theme( legend.position = "bottom",
axis.line = element_line(size=1, colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 18, hjust = 0.5),
text = element_text(size = 15),
axis.text.x = element_text(colour="black", size = 12),
axis.text.y = element_text(colour="black", size = 12) )
if ( PriorPosterior_PLOT ) { print(PrPostPLOT) }
}
####################################################################
####################################################################
## END (1) Only the above bit changes from function to function ##
####################################################################
####################################################################
## Output
# Construction of 'In' and 'Out' of control column for return results
States <- rep("", times = N)
States[ifelse(data < CL[, 1], TRUE, FALSE)] <- "Alarm (LL)" ; States[ifelse(data > CL[, 2], TRUE, FALSE)] <- "Alarm (UL)"
# Return results
PCC_summary <- data.frame( data = data, HPrD_LL = CL[, 1], HPrD_UL= CL[, 2], Alarms = States )
## Dynamic recalculation of PCC plot's y axis
# PCC y axis limits allowance
Ratio <- ( PCC_summary$HPrD_UL-PCC_summary$HPrD_LL)/min(PCC_summary$HPrD_UL-PCC_summary$HPrD_LL, na.rm = T )
# Y axis limits
AdjustedYlim <- c( min(PCC_summary$data, PCC_summary$HPrD_LL[which(Ratio<=2.5)], na.rm = T),
max(PCC_summary$data, PCC_summary$HPrD_UL[which(Ratio<=2.5)], na.rm = T) )
### Output of function
## PCC plot
if ( PCC_PLOT | pdf_report ) {
# Creation of PCC plot
PCC_PlotSummary <- cbind( Indices = 1:N, PCC_summary )
PCC <- ggplot( PCC_PlotSummary, aes(PCC_PlotSummary[, "Indices"], PCC_PlotSummary[, "data"]) ) +
geom_line( aes(x = PCC_PlotSummary[, "Indices"], y = PCC_PlotSummary[, "data"]), na.rm = TRUE ) +
geom_line( aes(x = PCC_PlotSummary[, "Indices"], y = PCC_PlotSummary[, "HPrD_UL"]), color = "red", linetype = "solid", size = 1, na.rm = TRUE ) +
geom_line( aes(x = PCC_PlotSummary[, "Indices"], y = PCC_PlotSummary[, "HPrD_LL"]), color = "red", linetype = "solid", size = 1, na.rm = TRUE ) +
geom_ribbon( aes(x = PCC_PlotSummary[, "Indices"], ymin = PCC_PlotSummary[, "HPrD_UL"], ymax = PCC_PlotSummary[, "HPrD_LL"], fill = TRUE), alpha = 0.25, show.legend = FALSE ) +
scale_fill_manual( values = c("TRUE" = "green") ) +
geom_point( aes(group = PCC_PlotSummary[, "Indices"], color = as.factor(PCC_PlotSummary[, "Alarms"]), stroke = 1.5), show.legend = FALSE, na.rm = TRUE ) +
scale_color_manual( values = c("black", "red", "red"), na.value = "black" ) +
coord_cartesian( ylim = AdjustedYlim ) +
labs( title = main, x = xlab, y = ylab ) +
theme( legend.position = "top",
legend.title = element_blank(),
axis.line = element_line( colour = "black", size = 0.5, linetype = "solid" ),
panel.background = element_blank(),
plot.title = element_text( hjust = 0.5 ) )
# Creation of PCC plot if historical data are chosen to be on the plot
if ( !is.null(historical_data) ) {
PCC_summary_historicaldata <- data.frame( data = c(historical_data, data), HPrD_LL = c(rep(NA, times = N_historicaldata), CL[, 1]),
HPrD_UL = c(rep(NA, times = N_historicaldata), CL[, 2]), Alarms = c(rep("", times = N_historicaldata), States) )
PCC_PlotSummaryHist <- cbind( Indices = c(-N_historicaldata:(-1), 1:N),
TypeOfdata = c(rep("Historical", times = N_historicaldata), rep("Current", times = N)),
PCC_summary_historicaldata )
PCC_historical <- ggplot( PCC_PlotSummaryHist, aes(PCC_PlotSummaryHist[, "Indices"], PCC_PlotSummaryHist[, "data"]) ) +
geom_line( aes(x = PCC_PlotSummaryHist[, "Indices"], y = PCC_PlotSummaryHist[, "data"], linetype = as.factor(PCC_PlotSummaryHist[, "TypeOfdata"])), na.rm = TRUE ) +
geom_segment( aes(x = 0, y = min(PCC_PlotSummaryHist[, "HPrD_LL"], na.rm = TRUE), xend = 0, yend = max(PCC_PlotSummaryHist[, "HPrD_UL"], na.rm = TRUE)) ) +
geom_line( aes(x = PCC_PlotSummaryHist[, "Indices"], y = PCC_PlotSummaryHist[, "HPrD_UL"]), color = "red", linetype = "solid", size = 1, na.rm = TRUE ) +
geom_line( aes(x = PCC_PlotSummaryHist[, "Indices"], y = PCC_PlotSummaryHist[, "HPrD_LL"]), color = "red", linetype = "solid", size = 1, na.rm = TRUE ) +
geom_ribbon( aes(x = PCC_PlotSummaryHist[, "Indices"], ymin = PCC_PlotSummaryHist[, "HPrD_UL"], ymax = PCC_PlotSummaryHist[, "HPrD_LL"], fill = TRUE), alpha = 0.25, show.legend = FALSE ) +
scale_fill_manual( values = c("TRUE" = "green") ) +
geom_point( aes(group = PCC_PlotSummaryHist[, "Indices"], shape = as.factor(PCC_PlotSummaryHist[, "TypeOfdata"]), color = as.factor(PCC_PlotSummaryHist[, "Alarms"]), stroke = 1.5),
show.legend = FALSE, na.rm = TRUE ) +
scale_color_manual( values=c("black", "red", "red"), na.value = "black" ) +
scale_linetype_manual( values = c("Historical" = "dotted", "Current" = "solid") ) +
scale_shape_manual( values = c("Historical" = 1, "Current" = 19) ) +
coord_cartesian( ylim = AdjustedYlim ) +
labs( title = main, x = xlab, y = ylab ) +
theme( legend.position = "top",
legend.title = element_blank(),
axis.line = element_line(colour = "black", size = 0.5, linetype = "solid"),
panel.background = element_blank(),
plot.title = element_text( hjust = 0.5 ) )
}
if ( historical_data_PLOT ) { print(PCC_historical)
} else { if ( PCC_PLOT) { print(PCC) } }
}
# List of results
if ( summary_list ) { return(PCC_summary) }
# List of results return in pdf
if ( pdf_report ) {
# save pdf
pdf(
paste0( path_pdf_report, "\\", "PCC_results_", paste0( unlist(strsplit(date(), " "))[c(1,2,3,5)], collapse = "_" ), "_",
paste0( unlist(strsplit( unlist(strsplit(date(), " "))[4], ":" )), collapse = "." ),
".pdf" ),
height = 8.264, width = 11.694)
# PCC plot on pdf
if ( !is.null(historical_data) & historical_data_PLOT ) { print(PCC_historical)
} else { print(PCC) }
# Prior Posterior plot on pdf
print(PrPostPLOT)
# Results matrix on pdf
# Chunk of code to split results matrix to different pages - Set a default number based on pdf height/width
NRowsPerPage <- 25
if(NRowsPerPage > nrow(PCC_summary)){ FloatingRow <- nrow(PCC_summary) } else { FloatingRow <- NRowsPerPage }
sapply(1:ceiling(nrow(PCC_summary)/NRowsPerPage), function(index) {
if (index==1) { StartingRow <- 1 }
grid.newpage()
grid.table(PCC_summary[StartingRow:FloatingRow, ])
StartingRow <<- FloatingRow + 1
if( sum(NRowsPerPage, FloatingRow) < nrow(PCC_summary)){ FloatingRow <<- NRowsPerPage + FloatingRow } else { FloatingRow <<- nrow(PCC_summary) }
})
dev.off()
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.