Description Usage Arguments Value See Also
View source: R/Bayesian_Bricks.r
This is a generic function that will generate the the density value of the posterior predictive distribution. i.e. for the model structure:
theta|gamma \sim H(gamma)
x|theta \sim F(theta)
get the probability density/mass of the posterior predictive distribution of a new sample x_new: p(x_new|gamma).
For a given Bayesian bricks object obj and a new sample x, dPosteriorPredictive()
will calculate the marginal likelihood for different model structures:
Where
x \sim Gaussian(A z + b, Sigma)
z \sim Gaussian(m,S)
dPosteriorPredictive()
will return p(x|m,S,A,b,Sigma)
See ?dPosteriorPredictive.LinearGaussianGaussian
for details.
Where
x \sim Gaussian(mu,Sigma)
mu \sim Gaussian(m,S)
Sigma is known.
dPosteriorPredictive()
will return p(x|m,S,Sigma)
See ?dPosteriorPredictive.GaussianGaussian
for details.
Where
x \sim Gaussian(mu,Sigma)
Sigma \sim InvWishart(v,S)
mu is known.
dPosteriorPredictive()
will return p(x|mu,v,S)
See ?dPosteriorPredictive.GaussianInvWishart
for details.
Where
x \sim Gaussian(mu,Sigma)
Sigma \sim InvWishart(v,S)
mu \sim Gaussian(m,Sigma/k)
dPosteriorPredictive()
will return p(x|m,k,v,S)
See ?dPosteriorPredictive.GaussianNIW
for details.
Where
x \sim Gaussian(X beta,sigma^2)
sigma^2 \sim InvGamma(a,b)
beta \sim Gaussian(m,sigma^2 V)
X is a row vector, or a design matrix where each row is an obervation.
dPosteriorPredictive()
will return p(x,X|m,V,a,b)
See ?dPosteriorPredictive.GaussianNIG
for details.
Where
x \sim Categorical(pi)
pi \sim Dirichlet(alpha)
dPosteriorPredictive()
will return p(x|alpha)
See ?dPosteriorPredictive.CatDirichlet
for details.
Where
x \sim Categorical(pi)
pi \sim DirichletProcess(alpha)
dPosteriorPredictive()
will return p(x|alpha)
See ?dPosteriorPredictive.CatDP
for details.
1 | dPosteriorPredictive(obj, ...)
|
obj |
A "BayesianBrick" object used to select a method. |
... |
further arguments passed to or from other methods. |
numeric, the density value
dPosteriorPredictive.LinearGaussianGaussian
for Linear Gaussian and Gaussian conjugate structure, dPosteriorPredictive.GaussianGaussian
for Gaussian-Gaussian conjugate structure, dPosteriorPredictive.GaussianInvWishart
for Gaussian-Inverse-Wishart conjugate structure, dPosteriorPredictive.GaussianNIW
for Gaussian-NIW conjugate structure, dPosteriorPredictive.GaussianNIG
for Gaussian-NIG conjugate structure, dPosteriorPredictive.CatDirichlet
for Categorical-Dirichlet conjugate structure, dPosteriorPredictive.CatDP
for Categorical-DP conjugate structure ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.