Description Usage Arguments Value References Examples
View source: R/Gamma_Inference.r
For a random matrix x, the density function of Wishart distribution is defined as:
(2^{(df p)/2} Gamma_p(df/2) |rate|^{-df/2})^{-1} |x|^{(df-p-1)/2} exp(-1/2 tr(x rate))
Where x is a pxp symmetric positive definite matrix, Gamma_p() is the multivariate Gamma function of dimension p.
| 1 | 
| x | matrix, a symmetric positive-definite matrix. | 
| df | numeric, the degree of freedom. | 
| rate | matrix, a symmetric positive-definite matrix, the 'rate', or 'inverse-scale' parameter. The 'rate' parameter in Wishart is the 'scale' parameter in InvWishart | 
| LOG | logical, return log density of LOG=TRUE, default TRUE. | 
A numeric vector, the density values.
Wishart, John. "The generalized product moment distribution in samples from a normal multivariate population." Biometrika (1928): 32-52.
MARolA, K. V., JT KBNT, and J. M. Bibly. Multivariate analysis. AcadeInic Press, Londres, 1979.
| 1 2 3 4 5 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.