Description Usage Arguments Value References Examples
View source: R/Gamma_Inference.r
For a random matrix x, The density function of Inverse-Wishart distribution is defined as:
(2^{(df p)/2} Gamma_p(df/2) |scale|^{-df/2})^{-1} |x|^{(-df-p-1)/2} exp(-1/2 tr(x^{-1} scale))
Where x is a pxp symmetric positive definite matrix, Gamma_p() is the multivariate Gamma function of dimension p.
1 | dInvWishart(x, df, scale, LOG = TRUE)
|
x |
matrix, a symmetric positive-definite matrix. |
df |
numeric, the degree of freedom. |
scale |
matrix, a symmetric positive-definite matrix, the 'scale' parameter. The 'rate' parameter in Wishart is the 'scale' parameter in InvWishart. |
LOG |
logical, return log density of LOG=TRUE, default TRUE. |
A numeric vector, the density values.
Wishart, John. "The generalized product moment distribution in samples from a normal multivariate population." Biometrika (1928): 32-52.
MARolA, K. V., JT KBNT, and J. M. Bibly. Multivariate analysis. AcadeInic Press, Londres, 1979.
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.