Description Usage Arguments Value References See Also Examples
View source: R/Gaussian_Inference.r
Create an object of type "GaussianNIG", which represents the Gaussian and Normal-Inverse-Gamma (Gaussian-NIG) conjugate structure:
x \sim Gaussian(X beta,sigma^2)
sigma^2 \sim InvGamma(a,b)
beta \sim Gaussian(m,sigma^2 V)
Where X is a row vector, or a design matrix where each row is an obervation. InvGamma() is the Inverse-Gamma distribution, Gaussian() is the Gaussian distribution. See ?dInvGamma
and dGaussian
for the definitions of these distribution.
This object will be used as a place for recording and accumulating information in the related inference/sampling functions such as posterior(), posteriorDiscard(), MAP(), marginalLikelihood(), dPosteriorPredictive(), rPosteriorPredictive() and so on.
1 2 3 4 5 | GaussianNIG(
objCopy = NULL,
ENV = parent.frame(),
gamma = list(m = 0, V = 1, a = 1, b = 1)
)
|
objCopy |
An object of type "GaussianNIG". If "objCopy" is not NULL, the function create a new "GaussianNIG" object by copying the content from objCopy, otherwise this new object will be created by using "ENV" and "gamma". Default NULL. |
ENV |
environment, specify in which environment the object will be created |
gamma |
list, a named list of NIG parameters, gamma=list(m,V,a,b). Where gamma$m is a numeric "location" parameter; gamma$V is a symmetric positive definite matrix representing the "scale" parameters; gamma$a and gamma$b are the "shape" and "scale" parameter of the Inverse Gamma distribution. |
An object of class "GaussianNIG".
Banerjee, Sudipto. "Bayesian Linear Model: Gory Details." Downloaded from http://www. biostat. umn. edu/~ph7440 (2008).
posterior.GaussianNIG
,posteriorDiscard.GaussianNIG
,MAP.GaussianNIG
,MPE.GaussianNIG
,marginalLikelihood.GaussianNIG
,dPosteriorPredictive.GaussianNIG
, rPosteriorPredictive.GaussianNIG
...
1 2 3 4 5 6 7 8 | X <- 1:20 #generate some linear data
x <- rnorm(20)+ X*0.3 #generate some linear data
obj <- GaussianNIG(gamma=list(m=0,V=1,a=1,b=0)) #create a GaussianNIG object
ss <- sufficientStatistics(obj = obj,X=X,x=x) #the sufficient statistics of X and x
posterior(obj = obj,ss = ss) #add the infomation to the posterior
MAP(obj) #get the MAP estimate of beta and sigma^2
## print the whole content, "invV" and "mVm" in the output are temporary variables.
obj
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.