Description Usage Arguments Value See Also Examples
View source: R/Gaussian_Inference.r
Generate the the density value of the posterior distribution of the following structure:
x \sim Gaussian(A z + b, Sigma)
z \sim Gaussian(m,S)
Where Sigma is known. A is a dimx x dimz matrix, x is a dimx x 1 random vector, z is a dimz x 1 random vector, b is a dimm x 1 vector. Gaussian() is the Gaussian distribution. See ?dGaussian
for the definition of Gaussian distribution.
The model structure and prior parameters are stored in a "LinearGaussianGaussian" object.
Posterior density is the density function of Gaussian(z|m,S).
1 2 | ## S3 method for class 'LinearGaussianGaussian'
dPosterior(obj, z, LOG = TRUE, ...)
|
obj |
A "LinearGaussianGaussian" object. |
z |
matrix, or the ones that can be converted to matrix. Each row of z is an sample. |
LOG |
Return the log density if set to "TRUE". |
... |
Additional arguments to be passed to other inherited types. |
A numeric vector of the same length as nrow(z), the posterior density.
LinearGaussianGaussian
, rPosterior.LinearGaussianGaussian
1 2 3 4 5 | obj <- LinearGaussianGaussian(gamma=list(Sigma=matrix(c(2,1,1,2),2,2),
m=c(0.2,0.5,0.6),S=diag(3)))
z <- rGaussian(10,mu = runif(3),Sigma = diag(3))
dPosterior(obj = obj,z=z)
dPosterior(obj = obj,z=z,LOG=FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.