Description Usage Arguments Value See Also Examples
View source: R/Gaussian_Inference.r
Generate the the density value of the posterior distribution of the following structure:
x \sim Gaussian(X beta,sigma^2)
sigma^2 \sim InvGamma(a,b)
beta \sim Gaussian(m,sigma^2 V)
Where X is a row vector, or a design matrix where each row is an obervation. InvGamma() is the Inverse-Gamma distribution, Gaussian() is the Gaussian distribution. See ?dInvGamma
and dGaussian
for the definitions of these distribution.
The model structure and prior parameters are stored in a "GaussianNIG" object.
Posterior density is the density function of beta,sigma^2|a,b,m,V.
1 2 | ## S3 method for class 'GaussianNIG'
dPosterior(obj, beta, sigma2, LOG = TRUE, ...)
|
obj |
A "GaussianNIG" object. |
beta |
numeric vector. |
sigma2 |
numeric. |
LOG |
Return the log density if set to "TRUE". |
... |
Additional arguments to be passed to other inherited types. |
numeric, the posterior density of (beta,sigma^2).
GaussianNIG
, rPosterior.GaussianNIG
1 2 | obj <- GaussianNIG(gamma=list(m=c(0,0),V=diag(2),a=1,b=1))
dPosterior(obj = obj,beta=runif(2),sigma2=3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.