Description Usage Arguments Value References See Also Examples
View source: R/Gaussian_Inference.r
Get the density of a NIW sample. For a random vector mu, and a random matrix Sigma, the density function is defined as:
sqrt(2 pi^p |Sigma/k|)^{-1} exp(-1/2 (mu-m )^T (Sigma/k)^{-1} (mu-m)) (2^{(v p)/2} Gamma_p(v/2) |S|^{-v/2})^{-1} |Sigma|^{(-v-p-1)/2} exp(-1/2 tr(Sigma^{-1} S))
Where p is the dimension of mu and Sigma.
1 |
mu |
numeric, the Gaussian sample. |
Sigma |
matrix, a symmetric positive definite matrix, the Inverse-Wishart sample. |
m |
numeric, mean of mu. |
k |
numeric, precision of mu. |
v |
numeric, degree of freedom of Sigma. |
S |
numeric, a symmetric positive definite scale matrix of Sigma, S is proportional to E(Sigma). |
LOG |
logical, return log density of LOG=TRUE, default TRUE. |
A numeric vector, the probability density of (mu,Sigma).
O'Hagan, Anthony, and Jonathan J. Forster. Kendall's advanced theory of statistics, volume 2B: Bayesian inference. Vol. 2. Arnold, 2004.
MARolA, K. V., JT KBNT, and J. M. Bibly. Multivariate analysis. AcadeInic Press, Londres, 1979.
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.