Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(beastt)
## ----class.source = 'fold-hide'-----------------------------------------------
library(tibble)
library(distributional)
library(dplyr)
library(ggplot2)
library(rstan)
set.seed(1234)
summary(int_tte_df)
summary(ex_tte_df)
## -----------------------------------------------------------------------------
ps_obj <- calc_prop_scr(internal_df = filter(int_tte_df, trt == 0),
external_df = ex_tte_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)
ps_obj
## -----------------------------------------------------------------------------
prop_scr_hist(ps_obj)
prop_scr_dens(ps_obj, variable = "ipw")
## -----------------------------------------------------------------------------
prop_scr_love(ps_obj, reference_line = 0.1)
## -----------------------------------------------------------------------------
pwr_prior <- calc_power_prior_weibull(ps_obj,
response = y,
event = event,
intercept = dist_normal(0, 10),
shape = 50,
approximation = "Laplace")
plot_dist(pwr_prior)
## -----------------------------------------------------------------------------
r_external <- sum(ex_tte_df$event) # number of observed events
mix_prior <- robustify_mvnorm(pwr_prior, r_external, weights = c(0.5, 0.5)) # RMP
mix_means(mix_prior) # mean vectors
mix_sigmas(mix_prior) # mean covariance matrices
#plot_dist(mix_prior)
## -----------------------------------------------------------------------------
post_control <- calc_post_weibull(filter(int_tte_df, trt == 0),
response = y,
event = event,
prior = mix_prior,
analysis_time = 12)
summary(post_control)$summary
#plot_dist(post_control)
## -----------------------------------------------------------------------------
surv_prob_control <- as.data.frame(extract(post_control, pars = c("survProb")))[,1]
ggplot(data.frame(samp = surv_prob_control), aes(x = samp)) +
labs(y = "Density", x = expression(paste(S[C], "(t=12)"))) +
ggtitle(expression(paste("Posterior Samples of ", S[C], "(t=12)"))) +
geom_histogram(aes(y = after_stat(density)), color = "#5398BE", fill = "#5398BE",
position = "identity", binwidth = .01, alpha = 0.5) +
geom_density(color = "black") +
coord_cartesian(xlim = c(-0.2, 0.8)) +
theme_bw()
## -----------------------------------------------------------------------------
vague_prior <- dist_multivariate_normal(mu = list(mix_means(mix_prior)[[2]]),
sigma = list(mix_sigmas(mix_prior)[[2]]))
post_treated <- calc_post_weibull(filter(int_tte_df, trt == 1),
response = y,
event = event,
prior = vague_prior,
analysis_time = 12)
summary(post_treated)$summary
#plot_dist(post_treated)
## -----------------------------------------------------------------------------
surv_prob_treated <- as.data.frame(extract(post_treated, pars = c("survProb")))[,1]
ggplot(data.frame(samp = surv_prob_treated), aes(x = samp)) +
labs(y = "Density", x = expression(paste(S[T], "(t=12)"))) +
ggtitle(expression(paste("Posterior Samples of ", S[T], "(t=12)"))) +
geom_histogram(aes(y = after_stat(density)), color = "#FFA21F", fill = "#FFA21F",
position = "identity", binwidth = .01, alpha = 0.5) +
geom_density(color = "black") +
coord_cartesian(xlim = c(-0.2, 0.8)) +
theme_bw()
## -----------------------------------------------------------------------------
samp_trt_diff <- surv_prob_treated - surv_prob_control
ggplot(data.frame(samp = samp_trt_diff), aes(x = samp)) +
labs(y = "Density", x = expression(paste(S[T], "(t=12) - ", S[C], "(t=12)"))) +
ggtitle(expression(paste("Posterior Samples of ", S[T],
"(t=12) - ", S[C], "(t=12)"))) +
geom_histogram(aes(y = after_stat(density)), color = "#FF0000", fill = "#FF0000",
position = "identity", binwidth = .01, alpha = 0.5) +
geom_density(color = "black") +
coord_cartesian(xlim = c(-0.2, 0.8)) +
theme_bw()
## -----------------------------------------------------------------------------
mean(samp_trt_diff > 0)
## -----------------------------------------------------------------------------
c(mean = mean(samp_trt_diff),
median = median(samp_trt_diff),
SD = sd(samp_trt_diff))
## -----------------------------------------------------------------------------
quantile(samp_trt_diff, c(.025, .975)) # 95% CrI
## -----------------------------------------------------------------------------
post_ctrl_no_brrw <- calc_post_weibull(filter(int_tte_df, trt == 0),
response = y,
event = event,
prior = vague_prior,
analysis_time = 12)
surv_prob_ctrl_nb <- as.data.frame(extract(post_ctrl_no_brrw, pars = c("survProb")))[,1]
n_int_ctrl <- nrow(filter(int_tte_df, trt == 0)) # sample size of internal control arm
var_no_brrw <- var(surv_prob_ctrl_nb) # post variance of S_C(t) without borrowing
var_brrw <- var(surv_prob_control) # post variance of S_C(t) with borrowing
ess <- n_int_ctrl * var_no_brrw / var_brrw # effective sample size
ess
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.