Nothing
utils::globalVariables(c(
"from", "to", "color", "from_name", "from_title", "from_keywords",
"from_keywordsplus", "from_id", "from_size", "from_years",
"to_name", "to_title", "to_keywords", "from2", "x", "y", "color.x",
"to_keywordsplus", "to_id", "to_size", "to_years", "color.y",
"Title", "DOI", "LCS", "GCS", "xend", "yend", "text", "color_v", "id"
))
#' Plotting historical co-citation network
#'
#' \code{histPlot} plots a historical co-citation network.
#'
#' The function \code{\link{histPlot}} can plot a historical co-citation network previously created by \code{\link{histNetwork}}.
#' @param histResults is an object of \code{class} "list" containing the following components:
#'
#' \tabular{lll}{
#' NetMatrix \tab \tab the historical citation network matrix\cr
#' Degree \tab \tab the min degree of the network\cr
#' histData \tab \tab the set of n most cited references\cr
#' M \tab \tab the bibliographic data frame}
#'
#' is a network matrix obtained by the function \code{\link{histNetwork}}.
#' @param n is integer. It defines the number of vertices to plot.
#' @param size is an integer. It defines the point size of the vertices. Default value is 5.
#' @param labelsize is an integer. It indicates the label size in the plot. Default is \code{labelsize=5}.
#' @param remove.isolates is logical. If TRUE isolates vertices are not plotted.
#' @param title_as_label is a logical. DEPRECATED
#' @param label is a character. It indicates which label type to use as node id in the historiograph. It can be \code{label=c("short", "title", "keywords", "keywordsplus")}.
#' Default is \code{label = "short"}.
#' @param verbose is logical. If TRUE, results and plots are printed on screen.
#' @return It is list containing: a network object of the class \code{igraph} and a plot object of the class \code{ggraph}.
#'
#' @examples
#' # EXAMPLE Citation network
#' \dontrun{
#' data(management, package = "bibliometrixData")
#'
#' histResults <- histNetwork(management, sep = ";")
#'
#' net <- histPlot(histResults, n = 20, labelsize = 5)
#' }
#'
#' @seealso \code{\link{histNetwork}} to compute a historical co-citation network.
#' @seealso \code{\link{cocMatrix}} to compute a co-occurrence matrix.
#' @seealso \code{\link{biblioAnalysis}} to perform a bibliometric analysis.
#'
#' @export
histPlot <- function(histResults, n = 20, size = 5, labelsize = 5, remove.isolates = TRUE, title_as_label = FALSE, label = "short", verbose = TRUE) {
params <- list(
n = n,
size = size,
labelsize = labelsize,
title_as_label = title_as_label,
label = label
)
colorlist <- colorlist()
# c(brewer.pal(9, 'Set1')[-6], brewer.pal(8, 'Set2')[-7], brewer.pal(12, 'Paired')[-11],brewer.pal(12, 'Set3')[-c(2,8,12)])
## legacy with old argument size
if (isTRUE(size)) {
size <- 5
}
# LCS=histResults$LCS
LCS <- colSums(histResults$NetMatrix)
NET <- histResults$NetMatrix
## selecting the first n vertices or all if smaller
s <- sort(LCS, decreasing = TRUE)[min(n, length(LCS))]
ind <- which(LCS >= s)
# NET=NET[a,names(ind)]
NET <- NET[names(ind), names(ind)]
LCS <- LCS[ind]
# Create igraph object
bsk.network <- graph_from_adjacency_matrix(NET, mode = c("directed"), weighted = NULL)
R <- strsplit(names(V(bsk.network)), ",")
RR <- lapply(R, function(l) {
l <- l[1:2]
l <- paste(l[1], l[2], sep = ",")
})
# add label to nodes
V(bsk.network)$title <- histResults$histData$Title[ind]
V(bsk.network)$keywords <- histResults$histData$Author_Keywords[ind]
V(bsk.network)$keywordsplus <- histResults$histData$KeywordsPlus[ind]
switch(label,
title = {
title <- strsplit(stringi::stri_trans_totitle(V(bsk.network)$title), " ")
V(bsk.network)$id <- unlist(lapply(title, function(l) {
n <- floor(length(l) / 2)
paste0(paste(l[1:n], collapse = " ", sep = ""), "\n", paste(l[(n + 1):length(l)], collapse = " ", sep = ""))
}))
},
keywords = {
kw <- strsplit(stringi::stri_trans_totitle(V(bsk.network)$keywords), ";")
kw[is.na(kw)] <- "Not Available"
V(bsk.network)$id <- unlist(lapply(kw, function(l) {
if (length(l) > 1) {
n <- floor(length(l) / 2)
l <- trimws(l)
paste0(paste(l[1:n], collapse = "; ", sep = ""), "\n", paste(l[(n + 1):length(l)], collapse = "; ", sep = ""))
} else {
l
}
}))
},
keywordsplus = {
kw <- strsplit(stringi::stri_trans_totitle(V(bsk.network)$keywordsplus), ";")
kw[is.na(kw)] <- "Not Available"
V(bsk.network)$id <- unlist(lapply(kw, function(l) {
if (length(l) > 1) {
n <- floor(length(l) / 2)
l <- trimws(l)
paste0(paste(l[1:n], collapse = "; ", sep = ""), "\n", paste(l[(n + 1):length(l)], collapse = "; ", sep = ""))
} else {
l
}
}))
},
{
V(bsk.network)$id <- tolower(unlist(RR))
}
)
# Compute node degrees (#links) and use that to set node size:
deg <- LCS
V(bsk.network)$size <- size
# rep(size,length(V(bsk.network)))}
# Years=histResults$histData$Year[ind]
Years <- as.numeric(unlist(stringi::stri_extract_all_regex(unlist(RR), "[[:digit:]]{4}$")))
V(bsk.network)$years <- Years
# Remove loops
bsk.network <- igraph::simplify(bsk.network, remove.multiple = T, remove.loops = T)
# define network layout
E(bsk.network)$color <- "slategray1"
if (isTRUE(remove.isolates)) bsk.network <- delete.isolates(bsk.network)
dg <- decompose.graph(bsk.network)
layout_m <- as.data.frame(layout.fruchterman.reingold(bsk.network))
names(layout_m) <- c("x", "y")
layout_m$name <- V(bsk.network)$name
layout_m$years <- V(bsk.network)$years
layout_m$cluster <- 0
rr <- 0
for (k in 1:length(dg)) {
bsk <- dg[[k]]
a <- ifelse(layout_m$name %in% V(bsk)$name, k, 0)
layout_m$cluster <- layout_m$cluster + a
Min <- min(layout_m$y[layout_m$cluster == k]) - 1
layout_m$y[layout_m$cluster == k] <- layout_m$y[layout_m$cluster == k] + (rr - Min)
rr <- max(layout_m$y[layout_m$cluster == k])
}
# bsk <- bsk.network
wp <- membership(cluster_infomap(bsk.network, modularity = FALSE))
layout_m$color <- colorlist[wp]
layout_m$x <- layout_m$years
layout_m$y <- (diff(range(layout_m$x)) / diff(range(layout_m$y))) * layout_m$y
df_net <- igraph::as_long_data_frame(bsk.network)
df_net$color <- "slategray1"
ID <- setdiff(df_net$to, df_net$from)
df_from <- df_net %>%
select(from, to, color, from_name, from_title, from_keywords, from_keywordsplus, from_id, from_size, from_years)
df_to <- df_net %>%
dplyr::filter(to %in% ID) %>%
mutate(from2 = to) %>%
select(from2, to, color, to_name, to_title, to_keywords, to_keywordsplus, to_id, to_size, to_years)
df_to <- df_to[!duplicated(df_to$to), ]
label <- c("from", "to", "color", "name", "title", "keywords", "keywordsplus", "id", "size", "years")
names(df_from) <- label
names(df_to) <- label
df_net <- rbind(df_from, df_to)
layout_norm <- layout_m %>%
mutate(
x = (x - min(x)) / (max(x) - min(x)),
y = (y - min(y)) / (max(y) - min(y))
)
df_net <- left_join(df_net, layout_norm[c("name", "color", "x", "y")], by = c("name" = "name")) %>%
rename(
color = color.x,
color_v = color.y
)
df_coord <- layout_norm %>%
mutate(to = row_number()) %>%
select(to, x, y) %>%
rename(
xend = x,
yend = y
)
df_net <- df_net %>%
left_join(df_coord, by = "to")
ylength <- diff(range(df_net$years)) + 1
Ylabel <- (as.character(seq(min(df_net$years), max(df_net$years), length.out = ylength)))
Breaks <- (seq(0, 1, length.out = ylength))
df_net <- df_net %>%
left_join(histResults$histData, by = c("name" = "Paper")) # %>%
# Title <- strsplit(df_net$title, "(?<=.{40})", perl = TRUE)
Title <- gsub("(.{40})", "\\1\n", df_net$title)
df_net$Title <- unlist(lapply(Title, function(x) {
paste(x, "\n", collapse = "", sep = "")
}))
df_net <- df_net %>%
mutate(text = paste(tolower(Title), "doi: ",
DOI, "\nLCS: ",
LCS, " GCS: ",
GCS,
sep = ""
))
g <- ggplot(df_net, aes(x = x, y = y, xend = xend, yend = yend, text = text)) +
geom_network_edges(color = "grey", size = 0.4, alpha = 0.4) +
geom_network_nodes(aes(color = color_v), size = size, alpha = 0.5) +
geom_text(aes(label = id, color = color_v),
size = labelsize,
nudge_x = 0,
nudge_y = 0.02,
check_overlap = FALSE, alpha = 0.7
) +
scale_x_continuous(labels = Ylabel, breaks = Breaks) +
guides(size = "none", color = "none") +
theme_minimal() +
theme(
legend.position = "none", panel.background = element_rect(fill = "white", color = "white"),
axis.line.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(),
axis.title.y = element_blank(), axis.title.x = element_blank(),
panel.grid.minor.y = element_blank(), panel.grid.major.y = element_blank(),
panel.grid.major.x = element_line(adjustcolor(col = "grey", alpha.f = 0.2), linetype = 2, linewidth = 0.5),
panel.grid.minor.x = element_blank(),
axis.text.x = element_text(face = "bold", angle = 90, size = labelsize + 4)
) +
labs(title = "Historical Direct Citation Network")
### logo coordinates
data("logo", envir = environment())
logo <- grid::rasterGrob(logo, interpolate = TRUE)
a <- ggplot_build(g)$data
ymin <- unlist(lapply(a, function(l) {
if ("y" %in% names(l)) {
min(l["y"])
}
})) %>% min(na.rm = TRUE)
ymax <- unlist(lapply(a, function(l) {
if ("y" %in% names(l)) {
max(l["y"])
}
})) %>% max(na.rm = TRUE)
xmin <- unlist(lapply(a, function(l) {
if ("x" %in% names(l)) {
min(l["x"])
}
})) %>% min(na.rm = TRUE)
xmax <- unlist(lapply(a, function(l) {
if ("x" %in% names(l)) {
max(l["x"])
}
})) %>% max(na.rm = TRUE)
x <- c(xmax - 0.02 - diff(c(xmin, xmax)) * 0.125, xmax - 0.02)
y <- c(ymin, ymin + diff(c(ymin, ymax)) * 0.125) + 0.02
g <- g +
annotation_custom(logo, xmin = x[1], xmax = x[2], ymin = y[1], ymax = y[2])
label <- data.frame(Label = names(V(bsk.network)))
Data <- histResults$histData
Data <- left_join(label, Data, by = c("Label" = "Paper"))
if (isTRUE(verbose)) {
plot(g)
cat("\n Legend\n\n")
print(Data[, -2])
}
results <- list(net = bsk.network, g = g, graph.data = Data, layout = layout_m, axis = data.frame(label = Ylabel, values = Breaks), params = params)
return(results)
}
delete.isolates <- function(graph, mode = "all") {
isolates <- which(degree(graph, mode = mode) == 0) - 1
delete.vertices(graph, names(isolates))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.