Nothing
test_that("brm_archetype_effects() change and non-subgroup", {
set.seed(0L)
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
) |>
dplyr::mutate(response = rnorm(n = dplyr::n()))
out <- brm_archetype_effects(
data,
prefix_interest = "y_",
prefix_nuisance = "z_",
baseline = TRUE,
baseline_time = FALSE
)
tmp <- suppressMessages(summary(out))
out2 <- brm_archetype_effects(
out,
prefix_interest = "y_",
prefix_nuisance = "z_",
baseline = TRUE,
baseline_time = FALSE
)
expect_equal(out, out2)
expect_silent(brm_data_validate(out))
expect_true(all(class(data) %in% class(out)))
expect_s3_class(out, "brms_mmrm_effects")
expect_s3_class(out, "brms_mmrm_archetype")
attributes_data <- brm_data_attributes(data)
attributes_archetype <- brm_data_attributes(out)
attributes_archetype$brm_archetype_mapping <- NULL
attributes_archetype$brm_archetype_interest <- NULL
attributes_archetype$brm_archetype_nuisance <- NULL
expect_equal(attributes_data, attributes_archetype)
interest <- attr(out, "brm_archetype_interest")
nuisance <- attr(out, "brm_archetype_nuisance")
expect_equal(max(abs(colMeans(out[, nuisance]))), 0)
expect_equal(
qr(out[, c(interest, nuisance), drop = FALSE])$rank,
length(interest) + length(nuisance)
)
expect_equal(
sort(interest),
sort(
c(
"y_group_1_time_2",
"y_group_1_time_3",
"y_group_1_time_4",
"y_group_2_time_2",
"y_group_2_time_3",
"y_group_2_time_4"
)
)
)
expect_equal(
sort(nuisance),
sort(
c(
"z_biomarker1",
"z_biomarker2",
"z_baseline",
"z_status1_absent",
"z_status2_present"
)
)
)
expect_true(all(interest %in% colnames(out)))
expect_true(all(nuisance %in% colnames(out)))
expect_equal(
sort(interest),
sort(grep("y_", colnames(out), value = TRUE))
)
expect_equal(
sort(nuisance),
sort(grep("z_", colnames(out), value = TRUE))
)
param <- attr(out, "brm_archetype_mapping")
expect_equal(param$variable, interest)
expect_equal(param$group, rep(c("group_1", "group_2"), each = 3L))
expect_equal(param$time, rep(c("time_2", "time_3", "time_4"), times = 2L))
grid <- dplyr::distinct(
out,
group,
time,
y_group_1_time_2,
y_group_1_time_3,
y_group_1_time_4,
y_group_2_time_2,
y_group_2_time_3,
y_group_2_time_4
) |>
dplyr::arrange(group, time)
expect_equal(nrow(grid), 6L)
expect_equal(grid$group, rep(c("group_1", "group_2"), each = 3L))
expect_equal(grid$time, rep(paste0("time_", c(2L, 3L, 4L)), times = 2L))
expect_equal(
unname(as.matrix(grid[, seq(3L, 8L)])),
kronecker(rbind(c(1, 0), c(1, 1)), diag(3L))
)
})
test_that("brm_archetype_effects() non-change subgroup", {
set.seed(0L)
data <- brm_simulate_outline(
n_group = 2,
n_subgroup = 3,
n_patient = 100,
n_time = 3,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
) |>
dplyr::mutate(response = rnorm(n = dplyr::n()))
out <- brm_archetype_effects(data)
out2 <- brm_archetype_effects(out)
expect_equal(out, out2)
expect_silent(brm_data_validate(out))
expect_true(all(class(data) %in% class(out)))
expect_s3_class(out, "brms_mmrm_effects")
expect_s3_class(out, "brms_mmrm_archetype")
attributes_data <- brm_data_attributes(data)
attributes_archetype <- brm_data_attributes(out)
attributes_archetype$brm_archetype_mapping <- NULL
attributes_archetype$brm_archetype_interest <- NULL
attributes_archetype$brm_archetype_nuisance <- NULL
expect_equal(attributes_data, attributes_archetype)
interest <- attr(out, "brm_archetype_interest")
nuisance <- attr(out, "brm_archetype_nuisance")
expect_equal(
qr(out[, c(interest, nuisance), drop = FALSE])$rank,
length(interest) + length(nuisance)
)
expect_equal(max(abs(colMeans(out[, nuisance]))), 0)
expect_equal(
sort(interest),
sort(
c(
"x_group_1_subgroup_1_time_1",
"x_group_1_subgroup_1_time_2",
"x_group_1_subgroup_1_time_3",
"x_group_1_subgroup_2_time_1",
"x_group_1_subgroup_2_time_2",
"x_group_1_subgroup_2_time_3",
"x_group_1_subgroup_3_time_1",
"x_group_1_subgroup_3_time_2",
"x_group_1_subgroup_3_time_3",
"x_group_2_subgroup_1_time_1",
"x_group_2_subgroup_1_time_2",
"x_group_2_subgroup_1_time_3",
"x_group_2_subgroup_2_time_1",
"x_group_2_subgroup_2_time_2",
"x_group_2_subgroup_2_time_3",
"x_group_2_subgroup_3_time_1",
"x_group_2_subgroup_3_time_2",
"x_group_2_subgroup_3_time_3"
)
)
)
expect_equal(
sort(nuisance),
sort(
c(
"nuisance_biomarker1",
"nuisance_biomarker2",
"nuisance_status1_absent",
"nuisance_status2_present"
)
)
)
expect_true(all(interest %in% colnames(out)))
expect_true(all(nuisance %in% colnames(out)))
expect_equal(
sort(interest),
sort(grep("x_", colnames(out), value = TRUE))
)
expect_equal(
sort(nuisance),
sort(grep("nuisance_", colnames(out), value = TRUE))
)
expect_equal(max(abs(colMeans(out[, nuisance]))), 0)
param <- attr(out, "brm_archetype_mapping")
expect_equal(param$variable, interest)
expect_equal(param$group, rep(c("group_1", "group_2"), each = 9L))
expect_equal(
param$subgroup,
rep(
rep(c("subgroup_1", "subgroup_2", "subgroup_3"), each = 3L),
times = 2L
)
)
expect_equal(param$time, rep(c("time_1", "time_2", "time_3"), times = 6L))
grid <- dplyr::distinct(
out,
group,
subgroup,
time,
x_group_1_subgroup_1_time_1,
x_group_1_subgroup_1_time_2,
x_group_1_subgroup_1_time_3,
x_group_1_subgroup_2_time_1,
x_group_1_subgroup_2_time_2,
x_group_1_subgroup_2_time_3,
x_group_1_subgroup_3_time_1,
x_group_1_subgroup_3_time_2,
x_group_1_subgroup_3_time_3,
x_group_2_subgroup_1_time_1,
x_group_2_subgroup_1_time_2,
x_group_2_subgroup_1_time_3,
x_group_2_subgroup_2_time_1,
x_group_2_subgroup_2_time_2,
x_group_2_subgroup_2_time_3,
x_group_2_subgroup_3_time_1,
x_group_2_subgroup_3_time_2,
x_group_2_subgroup_3_time_3
) |>
dplyr::arrange(group, subgroup, time)
expect_equal(nrow(grid), 18L)
expect_equal(grid$group, rep(c("group_1", "group_2"), each = 9L))
expect_equal(
grid$subgroup,
rep(rep(paste0("subgroup_", seq_len(3L)), each = 3L), times = 2L)
)
expect_equal(grid$time, rep(paste0("time_", seq_len(3L)), times = 6L))
expect_equal(
unname(as.matrix(grid[, seq(4L, 21L)])),
kronecker(rbind(c(1, 0), c(1, 1)), diag(9L))
)
})
test_that("brm_archetype_effects() intercept non-subgroup", {
set.seed(0L)
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
) |>
dplyr::mutate(response = rnorm(n = dplyr::n()))
out <- brm_archetype_effects(
data,
intercept = TRUE,
prefix_interest = "y_",
prefix_nuisance = "z_",
baseline = TRUE,
baseline_time = FALSE
)
grid <- dplyr::distinct(
out,
group,
time,
y_group_1_time_2,
y_group_1_time_3,
y_group_1_time_4,
y_group_2_time_2,
y_group_2_time_3,
y_group_2_time_4
) |>
dplyr::arrange(group, time)
expect_equal(nrow(grid), 6L)
expect_equal(grid$group, rep(c("group_1", "group_2"), each = 3L))
expect_equal(grid$time, rep(paste0("time_", c(2L, 3L, 4L)), times = 2L))
exp <- kronecker(rbind(c(1, 0), c(1, 1)), diag(3L))
exp[, 1L] <- 1L
expect_equal(
unname(as.matrix(grid[, seq(3L, 8L)])),
exp
)
})
test_that("brm_archetype_effects() intercept subgroup", {
set.seed(0L)
data <- brm_simulate_outline(
n_group = 2,
n_subgroup = 3,
n_patient = 100,
n_time = 3,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
) |>
dplyr::mutate(response = rnorm(n = dplyr::n()))
out <- brm_archetype_effects(data, intercept = TRUE)
grid <- dplyr::distinct(
out,
group,
subgroup,
time,
x_group_1_subgroup_1_time_1,
x_group_1_subgroup_1_time_2,
x_group_1_subgroup_1_time_3,
x_group_1_subgroup_2_time_1,
x_group_1_subgroup_2_time_2,
x_group_1_subgroup_2_time_3,
x_group_1_subgroup_3_time_1,
x_group_1_subgroup_3_time_2,
x_group_1_subgroup_3_time_3,
x_group_2_subgroup_1_time_1,
x_group_2_subgroup_1_time_2,
x_group_2_subgroup_1_time_3,
x_group_2_subgroup_2_time_1,
x_group_2_subgroup_2_time_2,
x_group_2_subgroup_2_time_3,
x_group_2_subgroup_3_time_1,
x_group_2_subgroup_3_time_2,
x_group_2_subgroup_3_time_3
) |>
dplyr::arrange(group, subgroup, time)
expect_equal(nrow(grid), 18L)
expect_equal(grid$group, rep(c("group_1", "group_2"), each = 9L))
expect_equal(
grid$subgroup,
rep(rep(paste0("subgroup_", seq_len(3L)), each = 3L), times = 2L)
)
expect_equal(grid$time, rep(paste0("time_", seq_len(3L)), times = 6L))
exp <- kronecker(rbind(c(1, 0), c(1, 1)), diag(9L))
exp[, 1L] <- 1L
expect_equal(
unname(as.matrix(grid[, seq(4L, 21L)])),
exp
)
})
test_that("brm_archetype_effects() clda non-subgroup non-intercept", {
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 2,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = 0)
out <- brm_archetype_effects(data, clda = TRUE, intercept = FALSE)
interest <- c("x_group_1_time_1", "x_group_1_time_2", "x_group_2_time_2")
expect_equal(
interest,
attr(out, "brm_archetype_interest")
)
mapping <- attr(out, "brm_archetype_mapping")
expect_equal(mapping$variable, interest)
expect_equal(mapping$group, c("group_1", "group_1", "group_2"))
expect_equal(mapping$time, c("time_1", "time_2", "time_2"))
equations <- summary(out, message = FALSE)
expected <- c(
"group_1:time_1 = x_group_1_time_1",
"group_1:time_2 = x_group_1_time_2",
"group_2:time_1 = x_group_1_time_1",
"group_2:time_2 = x_group_1_time_2 + x_group_2_time_2"
)
expect_equal(equations, expected)
})
test_that("brm_archetype_effects() clda non-subgroup intercept", {
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 2,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = 0)
out <- brm_archetype_effects(data, clda = TRUE, intercept = TRUE)
interest <- c("x_group_1_time_1", "x_group_1_time_2", "x_group_2_time_2")
expect_equal(
interest,
attr(out, "brm_archetype_interest")
)
mapping <- attr(out, "brm_archetype_mapping")
expect_equal(mapping$variable, interest)
expect_equal(mapping$group, c("group_1", "group_1", "group_2"))
expect_equal(mapping$time, c("time_1", "time_2", "time_2"))
equations <- summary(out, message = FALSE)
expected <- c(
"group_1:time_1 = x_group_1_time_1",
"group_1:time_2 = x_group_1_time_1 + x_group_1_time_2",
"group_2:time_1 = x_group_1_time_1",
"group_2:time_2 = x_group_1_time_1 + x_group_1_time_2 + x_group_2_time_2"
)
expect_equal(equations, expected)
})
test_that("brm_archetype_effects() clda subgroup", {
data <- brm_simulate_outline(
n_group = 2,
n_subgroup = 2,
n_patient = 100,
n_time = 2,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = 0)
out <- brm_archetype_effects(data, clda = TRUE)
interest <- c(
"x_group_1_subgroup_1_time_1",
"x_group_1_subgroup_1_time_2",
"x_group_1_subgroup_2_time_1",
"x_group_1_subgroup_2_time_2",
"x_group_2_subgroup_1_time_2",
"x_group_2_subgroup_2_time_2"
)
expect_equal(
interest,
attr(out, "brm_archetype_interest")
)
mapping <- attr(out, "brm_archetype_mapping")
expect_equal(mapping$variable, interest)
expect_equal(
mapping$variable,
paste(
"x",
mapping$group,
mapping$subgroup,
mapping$time,
sep = "_"
)
)
equations <- summary(out, message = FALSE)
expected <- c(
"group_1:subgroup_1:time_1 = x_group_1_subgroup_1_time_1",
"group_1:subgroup_1:time_2 = x_group_1_subgroup_1_time_2",
"group_1:subgroup_2:time_1 = x_group_1_subgroup_2_time_1",
"group_1:subgroup_2:time_2 = x_group_1_subgroup_2_time_2",
"group_2:subgroup_1:time_1 = x_group_1_subgroup_1_time_1",
paste(
"group_2:subgroup_1:time_2 = x_group_1_subgroup_1_time_2 +",
"x_group_2_subgroup_1_time_2"
),
"group_2:subgroup_2:time_1 = x_group_1_subgroup_2_time_1",
paste(
"group_2:subgroup_2:time_2 = x_group_1_subgroup_2_time_2 +",
"x_group_2_subgroup_2_time_2"
)
)
expect_equal(equations, expected)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.