add_criterion | Add model fit criteria to model objects |
add_ic | Add model fit criteria to model objects |
addition-terms | Additional Response Information |
add_rstan_model | Add compiled 'rstan' models to 'brmsfit' objects |
ar | Set up AR(p) correlation structures |
arma | Set up ARMA(p,q) correlation structures |
as.brmsprior | Transform into a brmsprior object |
as.data.frame.brmsfit | Extract Posterior Draws |
as.mcmc.brmsfit | (Deprecated) Extract posterior samples for use with the... |
AsymLaplace | The Asymmetric Laplace Distribution |
autocor.brmsfit | (Deprecated) Extract Autocorrelation Objects |
autocor-terms | Autocorrelation structures |
bayes_factor.brmsfit | Bayes Factors from Marginal Likelihoods |
bayes_R2.brmsfit | Compute a Bayesian version of R-squared for regression models |
BetaBinomial | The Beta-binomial Distribution |
bridge_sampler.brmsfit | Log Marginal Likelihood via Bridge Sampling |
brm | Fit Bayesian Generalized (Non-)Linear Multivariate Multilevel... |
brm_multiple | Run the same 'brms' model on multiple datasets |
brmsfamily | Special Family Functions for 'brms' Models |
brmsfit-class | Class 'brmsfit' of models fitted with the 'brms' package |
brmsfit_needs_refit | Check if cached fit can be used. |
brmsformula | Set up a model formula for use in 'brms' |
brmsformula-helpers | Linear and Non-linear formulas in 'brms' |
brmshypothesis | Descriptions of 'brmshypothesis' Objects |
brms-package | Bayesian Regression Models using 'Stan' |
brmsterms | Parse Formulas of 'brms' Models |
car | Spatial conditional autoregressive (CAR) structures |
coef.brmsfit | Extract Model Coefficients |
combine_models | Combine Models fitted with 'brms' |
compare_ic | Compare Information Criteria of Different Models |
conditional_effects.brmsfit | Display Conditional Effects of Predictors |
conditional_smooths.brmsfit | Display Smooth Terms |
constant | Constant priors in 'brms' |
control_params | Extract Control Parameters of the NUTS Sampler |
cor_ar | (Deprecated) AR(p) correlation structure |
cor_arma | (Deprecated) ARMA(p,q) correlation structure |
cor_arr | (Defunct) ARR correlation structure |
cor_brms | (Deprecated) Correlation structure classes for the 'brms'... |
cor_bsts | (Defunct) Basic Bayesian Structural Time Series |
cor_car | (Deprecated) Spatial conditional autoregressive (CAR)... |
cor_cosy | (Deprecated) Compound Symmetry (COSY) Correlation Structure |
cor_fixed | (Deprecated) Fixed user-defined covariance matrices |
cor_ma | (Deprecated) MA(q) correlation structure |
cor_sar | (Deprecated) Spatial simultaneous autoregressive (SAR)... |
cosy | Set up COSY correlation structures |
create_priorsense_data.brmsfit | Prior sensitivity: Create priorsense data |
cs | Category Specific Predictors in 'brms' Models |
custom_family | Custom Families in 'brms' Models |
data_predictor | Prepare Predictor Data |
data_response | Prepare Response Data |
default_prior | Default priors for Bayesian models |
default_prior.default | Default Priors for 'brms' Models |
density_ratio | Compute Density Ratios |
diagnostic-quantities | Extract Diagnostic Quantities of 'brms' Models |
Dirichlet | The Dirichlet Distribution |
do_call | Execute a Function Call |
draws-brms | Transform 'brmsfit' to 'draws' objects |
draws-index-brms | Index 'brmsfit' objects |
emmeans-brms-helpers | Support Functions for 'emmeans' |
epilepsy | Epileptic seizure counts |
ExGaussian | The Exponentially Modified Gaussian Distribution |
expose_functions.brmsfit | Expose user-defined 'Stan' functions |
expp1 | Exponential function plus one. |
family.brmsfit | Extract Model Family Objects |
fcor | Fixed residual correlation (FCOR) structures |
fitted.brmsfit | Expected Values of the Posterior Predictive Distribution |
fixef.brmsfit | Extract Population-Level Estimates |
Frechet | The Frechet Distribution |
GenExtremeValue | The Generalized Extreme Value Distribution |
get_dpar | Draws of a Distributional Parameter |
get_refmodel.brmsfit | Projection Predictive Variable Selection: Get Reference Model |
get_y | Extract response values |
gp | Set up Gaussian process terms in 'brms' |
gr | Set up basic grouping terms in 'brms' |
horseshoe | Regularized horseshoe priors in 'brms' |
Hurdle | Hurdle Distributions |
hypothesis.brmsfit | Non-Linear Hypothesis Testing |
inhaler | Clarity of inhaler instructions |
InvGaussian | The Inverse Gaussian Distribution |
inv_logit_scaled | Scaled inverse logit-link |
is.brmsfit | Checks if argument is a 'brmsfit' object |
is.brmsfit_multiple | Checks if argument is a 'brmsfit_multiple' object |
is.brmsformula | Checks if argument is a 'brmsformula' object |
is.brmsprior | Checks if argument is a 'brmsprior' object |
is.brmsterms | Checks if argument is a 'brmsterms' object |
is.cor_brms | Check if argument is a correlation structure |
is.mvbrmsformula | Checks if argument is a 'mvbrmsformula' object |
is.mvbrmsterms | Checks if argument is a 'mvbrmsterms' object |
kfold.brmsfit | K-Fold Cross-Validation |
kfold_predict | Predictions from K-Fold Cross-Validation |
kidney | Infections in kidney patients |
lasso | (Defunct) Set up a lasso prior in 'brms' |
launch_shinystan.brmsfit | Interface to 'shinystan' |
LogisticNormal | The (Multivariate) Logistic Normal Distribution |
logit_scaled | Scaled logit-link |
log_lik.brmsfit | Compute the Pointwise Log-Likelihood |
logm1 | Logarithm with a minus one offset. |
loo.brmsfit | Efficient approximate leave-one-out cross-validation (LOO) |
loo_compare.brmsfit | Model comparison with the 'loo' package |
loo_model_weights.brmsfit | Model averaging via stacking or pseudo-BMA weighting. |
loo_moment_match.brmsfit | Moment matching for efficient approximate leave-one-out... |
loo_predict.brmsfit | Compute Weighted Expectations Using LOO |
loo_R2.brmsfit | Compute a LOO-adjusted R-squared for regression models |
loo_subsample.brmsfit | Efficient approximate leave-one-out cross-validation (LOO)... |
loss | Cumulative Insurance Loss Payments |
ma | Set up MA(q) correlation structures |
make_conditions | Prepare Fully Crossed Conditions |
mcmc_plot.brmsfit | MCMC Plots Implemented in 'bayesplot' |
me | Predictors with Measurement Error in 'brms' Models |
mi | Predictors with Missing Values in 'brms' Models |
mixture | Finite Mixture Families in 'brms' |
mm | Set up multi-membership grouping terms in 'brms' |
mmc | Multi-Membership Covariates |
mo | Monotonic Predictors in 'brms' Models |
model_weights.brmsfit | Model Weighting Methods |
MultiNormal | The Multivariate Normal Distribution |
MultiStudentT | The Multivariate Student-t Distribution |
mvbind | Bind response variables in multivariate models |
mvbrmsformula | Set up a multivariate model formula for use in 'brms' |
ngrps.brmsfit | Number of Grouping Factor Levels |
nsamples.brmsfit | (Deprecated) Number of Posterior Samples |
opencl | GPU support in Stan via OpenCL |
pairs.brmsfit | Create a matrix of output plots from a 'brmsfit' object |
parnames | Extract Parameter Names |
plot.brmsfit | Trace and Density Plots for MCMC Draws |
posterior_average.brmsfit | Posterior draws of parameters averaged across models |
posterior_epred.brmsfit | Draws from the Expected Value of the Posterior Predictive... |
posterior_interval.brmsfit | Compute posterior uncertainty intervals |
posterior_linpred.brmsfit | Posterior Draws of the Linear Predictor |
posterior_predict.brmsfit | Draws from the Posterior Predictive Distribution |
posterior_samples.brmsfit | (Deprecated) Extract Posterior Samples |
posterior_smooths.brmsfit | Posterior Predictions of Smooth Terms |
posterior_summary | Summarize Posterior draws |
posterior_table | Table Creation for Posterior Draws |
post_prob.brmsfit | Posterior Model Probabilities from Marginal Likelihoods |
pp_average.brmsfit | Posterior predictive draws averaged across models |
pp_check.brmsfit | Posterior Predictive Checks for 'brmsfit' Objects |
pp_mixture.brmsfit | Posterior Probabilities of Mixture Component Memberships |
predict.brmsfit | Draws from the Posterior Predictive Distribution |
predictive_error.brmsfit | Posterior Draws of Predictive Errors |
predictive_interval.brmsfit | Predictive Intervals |
prepare_predictions | Prepare Predictions |
print.brmsfit | Print a summary for a fitted model represented by a 'brmsfit'... |
print.brmsprior | Print method for 'brmsprior' objects |
prior_draws.brmsfit | Extract Prior Draws |
prior_summary.brmsfit | Priors of 'brms' models |
psis.brmsfit | Pareto smoothed importance sampling (PSIS) |
R2D2 | R2D2 Priors in 'brms' |
ranef.brmsfit | Extract Group-Level Estimates |
read_csv_as_stanfit | Read CmdStan CSV files as a brms-formatted stanfit object |
recompile_model | Recompile Stan models in 'brmsfit' objects |
reloo.brmsfit | Compute exact cross-validation for problematic observations |
rename_pars | Rename parameters in brmsfit objects |
residuals.brmsfit | Posterior Draws of Residuals/Predictive Errors |
restructure | Restructure Old R Objects |
restructure.brmsfit | Restructure Old 'brmsfit' Objects |
rows2labels | Convert Rows to Labels |
s | Defining smooths in 'brms' formulas |
sar | Spatial simultaneous autoregressive (SAR) structures |
save_pars | Control Saving of Parameter Draws |
set_prior | Prior Definitions for 'brms' Models |
Shifted_Lognormal | The Shifted Log Normal Distribution |
SkewNormal | The Skew-Normal Distribution |
stancode | Stan Code for Bayesian models |
stancode.brmsfit | Extract Stan code from 'brmsfit' objects |
stancode.default | Stan Code for 'brms' Models |
standata | Stan data for Bayesian models |
standata.brmsfit | Extract data passed to Stan from 'brmsfit' objects |
standata.default | Data for 'brms' Models |
stanvar | User-defined variables passed to Stan |
StudentT | The Student-t Distribution |
summary.brmsfit | Create a summary of a fitted model represented by a 'brmsfit'... |
theme_black | (Deprecated) Black Theme for 'ggplot2' Graphics |
theme_default | Default 'bayesplot' Theme for 'ggplot2' Graphics |
threading | Threading in Stan |
unstr | Set up UNSTR correlation structures |
update_adterms | Update Formula Addition Terms |
update.brmsfit | Update 'brms' models |
update.brmsfit_multiple | Update 'brms' models based on multiple data sets |
validate_newdata | Validate New Data |
validate_prior | Validate Prior for 'brms' Models |
VarCorr.brmsfit | Extract Variance and Correlation Components |
vcov.brmsfit | Covariance and Correlation Matrix of Population-Level Effects |
VonMises | The von Mises Distribution |
waic.brmsfit | Widely Applicable Information Criterion (WAIC) |
Wiener | The Wiener Diffusion Model Distribution |
ZeroInflated | Zero-Inflated Distributions |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.