tests/testthat/test-nlme.R

## test tidy, augment, glance methods from nlme-tidiers.R
stopifnot(require("testthat"), require("broom.mixed"), require("nlme"))

load(system.file("extdata", "nlme_example.rda", package = "broom.mixed",
                 mustWork=TRUE))

if (suppressPackageStartupMessages(require(nlme, quietly = TRUE))) {
  context("nlme models")

  d <- as.data.frame(ChickWeight)
  colnames(d) <- c("y", "x", "subj", "tx")
  fit <- lme(y ~ tx * x, random = ~x | subj, data = d)

  test_that("tidy works on nlme/lme fits", {
    td <- tidy(fit)
    expect_equal(
      names(td),
      c(
        "effect", "group", "term", "estimate",
        "std.error", "df", "statistic", "p.value"
      )
    )
    td_ci <- tidy(fit, conf.int = TRUE)
    expect_equal(
      names(td_ci),
      c(
          "effect", "group", "term", "estimate",
          "std.error", "df", "statistic", "p.value",
          "conf.low", "conf.high"
      )
    )
    expect_equal(nrow(td_ci), 12)
    td_ci_95 <- tidy(fit, conf.int = TRUE, conf.level = 0.95)
    td_ci_25 <- tidy(fit, conf.int = TRUE, conf.level = 0.25)
    cols_ci <- c("conf.low", "conf.high")
    cols_other <- names(td_ci_95)[!names(td_ci_95) %in% cols_ci]
    expect_identical(td_ci_95[, cols_other], td_ci_25[, cols_other])
    # FIXME: remove [1:11] subsetting in the two lines below once conf.int for
    # ran_pars Residual is implemented (see "FIXME: also do confint on
    # residual" in source file R/nlme_tidiers.R).
    expect_true(all(td_ci_95[["conf.low"]][1:11] < td_ci_25[["conf.low"]][1:11]))
    expect_true(all(td_ci_95[["conf.high"]][1:11] > td_ci_25[["conf.high"]][1:11]))
  })

  test_that("tidy works on non-linear fits", {
    fm1 <- nlme(height ~ SSasymp(age, Asym, R0, lrc),
      data = Loblolly,
      fixed = Asym + R0 + lrc ~ 1,
      random = Asym ~ 1,
      start = c(Asym = 103, R0 = -8.5, lrc = -3.3)
    )
    td <- expect_warning(tidy(fm1), "ran_pars not yet implemented")
    expect_equal(
      names(td),
      c(
        "effect", "term", "estimate",
        "std.error", "df", "statistic", "p.value"
      )
    )
    td_ran <- expect_warning(tidy(fm1, "ran_pars"))
    expect_is(td_ran, "tbl_df")
    expect_equal(ncol(td_ran), 1)
    expect_equal(nrow(td_ran), 0)
    td_fix <- tidy(fm1, "fixed")
    expect_equal(
      names(td_fix),
      c(
          "effect", "term", "estimate",
          "std.error", "df", "statistic", "p.value"
      )
    )
    td_ci <- tidy(fm1, "fixed", conf.int = TRUE)
    expect_equal(
      names(td_ci),
      c(
          "effect", "term", "estimate",
          "std.error", "df", "statistic", "p.value",
          "conf.low", "conf.high"
      )
    )
    td_ci_95 <- tidy(fm1, "fixed", conf.int = TRUE, conf.level = 0.95)
    td_ci_25 <- tidy(fm1, "fixed", conf.int = TRUE, conf.level = 0.25)
    cols_ci <- c("conf.low", "conf.high")
    cols_other <- names(td_ci_95)[!names(td_ci_95) %in% cols_ci]
    expect_identical(td_ci_95[, cols_other], td_ci_25[, cols_other])
    expect_true(all(td_ci_95[["conf.low"]] < td_ci_25[["conf.low"]]))
    expect_true(all(td_ci_95[["conf.high"]] > td_ci_25[["conf.high"]]))
  })

  test_that("augment works on lme fits with or without data", {
    au1 <- augment(fit)
    au2 <- augment(fit, d)
    expect_equal(au1, au2)
    expect_equal(dim(au1), c(578, 7))
  })
  dNAs <- d
  dNAs$y[c(1, 3, 5)] <- NA

  test_that("augment works on lme fits with NAs and na.omit", {
    fitNAs <- lme(y ~ tx * x,
      random = ~x | subj, data = dNAs,
      na.action = "na.omit"
    )
    au <- augment(fitNAs)
    expect_equal(nrow(au), sum(complete.cases(dNAs)))
  })


  test_that("augment works on lme fits with na.omit", {
    fitNAs <- lme(y ~ tx * x,
      random = ~x | subj, data = dNAs,
      na.action = "na.exclude"
    )

    au <- augment(fitNAs, dNAs)

    # with na.exclude, should have NAs in the output where there were NAs in input
    expect_equal(nrow(au), nrow(dNAs))
    expect_equal(complete.cases(au), complete.cases(dNAs))
  })

  test_that("glance includes deviance iff method='ML'", {
    expect(!("deviance" %in% names(glance(lmm0))),"deviance should not be in glance()")
    expect("deviance" %in% names(glance(lmm0ML)),"deviance should be in glance()")
  })

  ## FIXME: weak tests - only shows that no error occurs and
  ##  the right type is returned!
  test_that("glance works on nlme fits", {
    expect_is(glance(fit), "data.frame")
  })


  testFit <- function(fit, data = NULL) {
    test_that("Pinheiro/Bates fit works", {
      expect_is(tidy(fit, "fixed"), "data.frame")
      # TODO: Better idea than suppressWarnings to avoid "ran_pars" ??
      expect_is(suppressWarnings(tidy(fit)), "data.frame")
      expect_is(glance(fit), "data.frame")
      if (is.null(data)) {
        expect_is(augment(fit), "data.frame")
      } else {
        expect_is(augment(fit, data), "data.frame")
      }
    })
  }

  testFit(lme(score ~ Machine, data = Machines, random = ~1 | Worker))
  testFit(lme(score ~ Machine, data = Machines, random = ~1 | Worker, method = "ML"))
  testFit(lme(score ~ Machine, data = Machines, random = ~1 | Worker / Machine))
  testFit(lme(pixel ~ day + day^2, data = Pixel, random = list(Dog = ~day, Side = ~1)))
  testFit(lme(pixel ~ day + day^2 + Side,
    data = Pixel,
    random = list(Dog = ~day, Side = ~1)
  ))

  testFit(lme(yield ~ ordered(nitro) * Variety,
    data = Oats,
    random = ~1 / Block / Variety
  ))
  # There are cases where no data set is returned in the result
  # We can do nothing about this inconsistency but give a useful error message in augment
  fit <- nlme(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
    data = Theoph,
    random = pdDiag(lKe + lKa + lCl ~ 1)
  )
  test_that(
    "Fit without data in returned structure works when data are given", {
      expect_true(testFit(fit, Theoph))
    }
  )
  # When no data are passed, a meaningful message is issued
  expect_error(augment(fit), "explicit")

  context("gls models")

  test_that("basic gls tidying", {

      check_tidy(tidy(gls1), 3, 5,
                 c("term","estimate","std.error","statistic","p.value"))
      check_tidy(tidy(gls1, conf.int=TRUE), 3, 7,
                 c("term","estimate","std.error","statistic","p.value",
                   "conf.low","conf.high"))

  })

  test_that("basic gls augment with & without data", {
    au <- augment(gls1)
    expect_is(au, 'data.frame')
    expect_equal(nrow(au), nrow(Ovary))
    expect_true(all(c(".fitted", ".resid") %in% names(au)))

    au <- augment(gls1, data = Ovary)
    expect_is(au, 'data.frame')
    expect_equal(nrow(au), nrow(Ovary))
    expect_true(all(c(".fitted", ".resid") %in% names(au)))
  })

  # Verify that the varFunc tidiers work ####
  ChickWeight_arbitrary_group <-
    ChickWeight %>%
    mutate(
      group_arb_n=1 + (as.integer(Chick) > median(as.integer(Chick))),
      group_arb=c("low", "high")[group_arb_n]
    )
  fit <- lme(weight ~ Diet * Time, random = ~Time | Chick, data = ChickWeight)
  fit_varident <-
    lme(weight ~ Diet * Time, random = ~Time | Chick, data = ChickWeight_arbitrary_group, weights=varIdent(form=~1|group_arb))
  fit_varcomb <-
    suppressWarnings(lme(
      weight ~ Diet * Time,
      random = ~Time | Chick,
      data = ChickWeight_arbitrary_group,
      weights=
        varComb(
          varIdent(form=~1|group_arb),
          varExp(form=~Time|group_arb)
        ),
      # This is just trying to make an object to test the model-- it's not
      # trying to actually make a good model.
      control=lmeControl(returnObject=TRUE)
    ))

  test_that("varFunc tidy works with no weights argument", {
    expect_true(sum(tidy(fit)$effect %in% "var_model") == 0)
  })

  test_that("varFunc tidy works with a weights argument", {
    tidied_fit_varident <- tidy(fit_varident)
    expect_true(sum(tidied_fit_varident$effect %in% "var_model") == 2)
    expect_equal(
      tidied_fit_varident$group[tidied_fit_varident$effect %in% "var_model"],
      rep("varIdent(1 | group_arb)", 2)
    )
    expect_equal(
      tidied_fit_varident$term[tidied_fit_varident$effect %in% "var_model"],
      c("low", "high")
    )
    # The "estimated" column is not added unless it is needed
    expect_false("estimated" %in% names(tidied_fit_varident))
  })
  test_that("varComb tidy works", {
    tidied_fit_varcomb <- tidy(fit_varcomb)
    expect_true(sum(tidied_fit_varcomb$effect %in% "var_model") == 4)
    expect_equal(
      tidied_fit_varcomb$group[tidied_fit_varcomb$effect %in% "var_model"],
      rep(c("varIdent(1 | group_arb)", "varExp(Time | group_arb)"), each=2)
    )
    expect_equal(
      tidied_fit_varcomb$term[tidied_fit_varcomb$effect %in% "var_model"],
      rep(c("low", "high"), 2)
    )
  })

  fit_varident_fixed <-
    lme(
      weight ~ Diet * Time,
      random = ~Time | Chick,
      data = ChickWeight_arbitrary_group,
      weights=varIdent(fixed=c("low"=5), form=~1|group_arb)
    )
  # Two variables in fixed behave differently than one as the 'whichFix'
  # attribute is a vector and name matching must occur
  fit_varident_fixed_twovar <-
    lme(
      weight ~ Diet * Time,
      random = ~Time | Chick,
      data = ChickWeight_arbitrary_group,
      weights=varIdent(fixed=c("1*low"=5), form=~1|Diet*group_arb)
    )
  test_that("varFunc with fixed shows the term correctly", {
    tidied_fit_varident_fixed <- tidy(fit_varident_fixed)
    expect_true(sum(tidied_fit_varident_fixed$effect %in% "var_model") == 2)
    expect_equal(
      tidied_fit_varident_fixed$group[tidied_fit_varident_fixed$effect %in% "var_model"],
      rep("varIdent(1 | group_arb)", 2)
    )
    expect_equal(
      sum(tidied_fit_varident_fixed$estimated),
      nrow(tidied_fit_varident_fixed) - 1
    )
  })
  test_that("varFunc with fixed and more complex grouping shows the term correctly", {
    tidied_fit_varident_fixed_twovar <- tidy(fit_varident_fixed_twovar)
    expect_true(sum(tidied_fit_varident_fixed_twovar$effect %in% "var_model") == 5)
    expect_equal(
      tidied_fit_varident_fixed_twovar$group[tidied_fit_varident_fixed_twovar$effect %in% "var_model"],
      rep("varIdent(1 | Diet * group_arb)", 5)
    )
    expect_equal(
      sum(tidied_fit_varident_fixed_twovar$estimated),
      nrow(tidied_fit_varident_fixed_twovar) - 1
    )
  })

  # Verify that fixed sigma works ####
  m1 <- lme(distance ~ age, random = ~age |Subject, data = Orthodont)
  m2 <- update(m1, control = lmeControl(sigma = 1))
  tidy_no_fixed_sigma <- tidy(m1)
  tidy_yes_fixed_sigma <- tidy(m2)
  test_that("fixed sigma adds an 'estimated' column correctly", {
    expect_false("estimated" %in% names(tidy_no_fixed_sigma))
    expect_true("estimated" %in% names(tidy_yes_fixed_sigma))
  })
  test_that("fixed sigma shows as fixed", {
    expect_false(
      tidy_yes_fixed_sigma$estimated[tidy_yes_fixed_sigma$group %in% "Residual"]
    )
    expect_equal(
      sum(tidy_yes_fixed_sigma$estimated),
      nrow(tidy_yes_fixed_sigma) - 1
    )
  })
}

Try the broom.mixed package in your browser

Any scripts or data that you put into this service are public.

broom.mixed documentation built on Oct. 16, 2024, 1:06 a.m.