Nothing
#' Compare growth curves
#'
#'@description The \strong{marginal_comparison()} function estimates and
#' compare growth curves such as distance and velocity. This function is a wrapper around the
#' [marginaleffects::comparisons()] and [marginaleffects::avg_comparisons()].
#' The [marginaleffects::comparisons()] computes unit-level (conditional)
#' estimates whereas [marginaleffects::avg_comparisons()] return average
#' (marginal) estimates. A detailed explanation is available
#' [here](https://marginaleffects.com).
#'
#'
#' @param model An object of class \code{bgmfit}.
#'
#' @param datagrid Generate a grid of user-specified values for use in the
#' \code{newdata} argument in various functions of the \pkg{marginaleffects}
#' package. This is useful to define where in the predictor space we want to
#' evaluate the quantities of interest. See [marginaleffects::datagrid()] for
#' details. The default value for the \code{datagrid} is \code{NULL} implying
#' that no custom grid is constructed. To set a data grid, the argument should
#' be a data.frame constructed by using the [marginaleffects::datagrid()]
#' function, or else a named list which are internally used for setting up the
#' grid. For the user convenience, we also allow setting an empty list
#' \code{datagrid = list()} in which case essential arguments such as
#' \code{model}, \code{newdata} are taken up from the respective arguments
#' specified elsewhere. Further, the level 1 predictor (such as age) and any
#' covariate included in the model fit (e.g., gender) are also automatically
#' inferred from the \code{model} object.
#'
#' @param digits An integer (default \code{2}) to set the decimal places for the
#' estimates. The \code{digits} is passed on to the
#' [base::round()] function.
#'
#' @param average A logical to indicate whether to internally call the
#' [marginaleffects::comparisons()] or the
#' [marginaleffects::avg_comparisons()] function. If \code{FALSE} (default),
#' [marginaleffects::comparisons()] is called otherwise
#' [marginaleffects::avg_comparisons()] when \code{average = TRUE}.
#'
#' @param plot A logical to specify whether to plot comparisons by calling the
#' [marginaleffects::plot_comparisons()] function (\code{FALSE}) or not
#' (\code{FALSE}). If \code{FALSE} (default), then
#' [marginaleffects::comparisons()] or [marginaleffects::avg_comparisons()]
#' are called to compute predictions (see \code{average} for details)
#'
#' @param deriv A numeric to specify whether to estimate parameters based on the
#' differentiation of the distance curve or the model based first derivative.
#' Please see argument \code{variables} for more details.
#'
#' @param reformat A logical (default \code{TRUE}) to reformat the output
#' returned by the \code{marginaleffects} as a data.frame with column names
#' re-defined as follows: \code{conf.low} as \code{Q2.5}, and \code{conf.high}
#' as \code{Q97.5} (assuming that \code{conf_int = 0.95}). Also, following
#' columns are dropped from the data frame: \code{term}, \code{contrast},
#' \code{tmp_idx}, \code{predicted_lo}, \code{predicted_hi}, \code{predicted}.
#'
#' @inheritParams growthparameters.bgmfit
#' @inheritParams growthparameters_comparison.bgmfit
#' @inheritParams marginal_draws.bgmfit
#' @inheritParams marginaleffects::comparisons
#' @inheritParams marginaleffects::avg_comparisons
#' @inheritParams marginaleffects::plot_comparisons
#' @inheritParams marginaleffects::datagrid
#' @inheritParams brms::fitted.brmsfit
#'
#' @return A data frame objects with estimates and CIs for computed parameter(s)
#'
#' @export marginal_comparison.bgmfit
#' @export
#'
#' @seealso [marginaleffects::comparisons()]
#' [marginaleffects::avg_comparisons()]
#' [marginaleffects::plot_comparisons()]
#'
#' @references
#' \insertAllCited{}
#'
#' @inherit berkeley author
#'
#' @examples
#'
#' \donttest{
#' # Fit Bayesian SITAR model
#'
#' # To avoid mode estimation which takes time, the Bayesian SITAR model fit to
#' # the 'berkeley_exdata' has been saved as an example fit ('berkeley_exfit').
#' # See 'bsitar' function for details on 'berkeley_exdata' and 'berkeley_exfit'.
#'
#' # Check and confirm whether model fit object 'berkeley_exfit' exists
#' berkeley_exfit <- getNsObject(berkeley_exfit)
#'
#' model <- berkeley_exfit
#'
#' marginal_comparison(model, parameter = 'apgv', draw_ids = 1)
#' }
#'
marginal_comparison.bgmfit <- function(model,
resp = NULL,
ndraws = NULL,
draw_ids = NULL,
newdata = NULL,
datagrid = NULL,
re_formula = NA,
allow_new_levels = FALSE,
sample_new_levels = "gaussian",
xrange = 1,
digits = 2,
numeric_cov_at = NULL,
aux_variables = NULL,
levels_id = NULL,
avg_reffects = NULL,
idata_method = NULL,
ipts = NULL,
seed = 123,
future = FALSE,
future_session = 'multisession',
cores = NULL,
average = FALSE,
plot = FALSE,
showlegends = NULL,
variables = NULL,
deriv = NULL,
deriv_model = NULL,
comparison = "difference",
type = NULL,
by = FALSE,
conf_level = 0.95,
transform = NULL,
cross = FALSE,
wts = NULL,
hypothesis = NULL,
equivalence = NULL,
eps = NULL,
reformat = NULL,
estimate_center = NULL,
estimate_interval = NULL,
dummy_to_factor = NULL,
verbose = FALSE,
expose_function = FALSE,
usesavedfuns = NULL,
clearenvfuns = NULL,
envir = NULL,
...) {
if(!is.null(estimate_center)) {
ec_ <- getOption("marginaleffects_posterior_center")
options("marginaleffects_posterior_center" = estimate_center)
on.exit(options("marginaleffects_posterior_center" = ec_), add = TRUE)
}
if(!is.null(estimate_interval)) {
ei_ <- getOption("marginaleffects_posterior_interval")
options("marginaleffects_posterior_interval" = estimate_interval)
on.exit(options("marginaleffects_posterior_interval" = ei_), add = TRUE)
}
try(zz <- insight::check_if_installed(c("marginaleffects"),
minversion =
get_package_minversion(
'marginaleffects'
),
prompt = FALSE,
stop = FALSE))
if(!isTRUE(zz)) {
message("Please install the latest version of the 'marginaleffects' package",
"\n ",
"remotes::install_github('vincentarelbundock/marginaleffects')")
return(invisible(NULL))
}
if(is.null(envir)) {
envir <- model$model_info$envir
} else {
envir <- parent.frame()
}
if(is.null(usesavedfuns)) {
if(!is.null(model$model_info$exefuns[[1]])) {
usesavedfuns <- TRUE
} else if(is.null(model$model_info$exefuns[[1]])) {
if(expose_function) {
model <- expose_model_functions(model, envir = envir)
usesavedfuns <- TRUE
} else if(!expose_function) {
usesavedfuns <- FALSE
}
}
} else { # if(!is.null(usesavedfuns)) {
if(!usesavedfuns) {
if(expose_function) {
model <- expose_model_functions(model, envir = envir)
usesavedfuns <- TRUE
}
} else if(usesavedfuns) {
check_if_functions_exists(model, checks = TRUE,
usesavedfuns = usesavedfuns)
}
}
if(is.null(ndraws)) {
ndraws <- brms::ndraws(model)
}
if (is.null(resp)) {
resp_rev_ <- resp
} else if (!is.null(resp)) {
resp_rev_ <- paste0("_", resp)
}
xvar_ <- paste0('xvar', resp_rev_)
xvar <- model$model_info[[xvar_]]
cov_ <- paste0('cov', resp_rev_)
cov <- model$model_info[[cov_]]
uvarby <- model$model_info$univariate_by
# Note here, newdata is not model$data but rather model$model_info$bgmfit.data
# This was must for univariate_by
if(is.null(newdata)) {
#newdata <- model$model_info$bgmfit.data
}
if(!is.na(uvarby)) {
uvarby_ind <- paste0(uvarby, resp)
varne <- paste0(uvarby, resp)
# newdata <- newdata %>% dplyr::mutate(!! uvarby_ind := 1) %>% droplevels()
}
if(is.null(deriv) & is.null(deriv_model)) {
deriv <- 0
deriv_model <- FALSE
} else if(deriv == 0 & is.null(deriv_model)) {
deriv <- 0
deriv_model <- FALSE
} else if(deriv == 1 & is.null(deriv_model)) {
deriv <- 1
deriv_model <- TRUE
} else if(is.null(deriv) & !deriv_model) {
deriv <- 0
deriv_model <- FALSE
} else if(is.null(deriv) & deriv_model) {
deriv <- 1
deriv_model <- TRUE
}
# The deriv_model is a placeholder in marginaleffects
# if(is.null(deriv_model)) {
# deriv_model <- TRUE
# }
if (is.null(idata_method)) {
idata_method <- 'm2'
}
if(idata_method == 'm1') {
stop("For marginaleffects based functions, the " ,
" \n",
" 'idata_method' argument must be either NULL or 'm2'" )
}
if (is.null(eps)) eps <- 1e-6
# Initiate non formalArgs()
term <- NULL;
contrast <- NULL;
tmp_idx <- NULL;
predicted_lo <- NULL;
predicted_hi <- NULL;
predicted <- NULL;
conf.high <- NULL;
conf.low <- NULL;
estimate <- NULL;
`:=` <- NULL;
`.` <- NULL;
conf <- conf_level
probs <- c((1 - conf) / 2, 1 - (1 - conf) / 2)
probtitles <- probs[order(probs)] * 100
probtitles <- paste("Q", probtitles, sep = "")
# set_names_ <- c('Estimate', 'Est.Error', probtitles)
set_names_ <- c('Estimate', probtitles)
if(!is.null(model$model_info$decomp)) {
if(model$model_info$decomp == "QR") deriv_model<- FALSE
}
expose_method_set <- model$model_info[['expose_method']]
model$model_info[['expose_method']] <- 'NA' # Over ride method 'R'
o <- post_processing_checks(model = model,
xcall = match.call(),
resp = resp,
envir = envir,
deriv = deriv,
all = FALSE,
verbose = verbose)
oall <- post_processing_checks(model = model,
xcall = match.call(),
resp = resp,
envir = envir,
deriv = deriv,
all = TRUE,
verbose = FALSE)
test <- setupfuns(model = model, resp = resp,
o = o, oall = oall,
usesavedfuns = usesavedfuns,
deriv = deriv, envir = envir,
deriv_model = deriv_model,
...)
if(is.null(test)) return(invisible(NULL))
if(!isTRUE(
check_pkg_version_exists('brms',
minversion = get_package_minversion('brms'),
prompt = FALSE,
stop = FALSE,
verbose = FALSE))) {
if(is.null(check_if_functions_exists(model, o, model$xcall,
usesavedfuns = usesavedfuns))) {
return(invisible(NULL))
}
}
xcall <- strsplit(deparse(sys.calls()[[1]]), "\\(")[[1]][1]
scall <- sys.calls()
get_xcall <- function(xcall, scall) {
scall <- scall[[length(scall)]]
if(any(grepl("marginal_comparison", scall, fixed = T)) |
any(grepl("marginal_comparison.bgmfit", scall, fixed = T))) {
xcall <- "marginal_comparison"
} else {
xcall <- xcall
}
}
if(!is.null(model$xcall)) {
if(model$xcall == "marginal_comparison") {
xcall <- "marginal_comparison"
}
} else {
scall <- sys.calls()
xcall <- get_xcall(xcall, scall)
}
xcall <- xcall
check_if_package_installed(model, xcall = xcall)
model$xcall <- xcall
arguments <- get_args_(as.list(match.call())[-1], xcall)
arguments$model <- model
arguments$usesavedfuns <- usesavedfuns
get.cores_ <- get.cores(arguments$cores)
arguments$cores <- setincores <- get.cores_[['max.cores']]
.cores_ps <- get.cores_[['.cores_ps']]
if (future) {
if (future_session == 'multisession') {
future::plan('multisession', workers = setincores)
} else if (future_session == 'multicore') {
future::plan('multicore', workers = setincores)
}
}
full.args <- evaluate_call_args(cargs = as.list(match.call())[-1],
# fargs = formals(),
fargs = arguments,
dargs = list(...),
verbose = verbose)
full.args$model <- model
full.args$deriv_model <- deriv_model
full.args$newdata <- newdata
newdata <- do.call(get.newdata, full.args)
if(!is.na(uvarby)) {
uvarby_ind <- paste0(uvarby, resp)
varne <- paste0(uvarby, resp)
newdata <- newdata %>% dplyr::mutate(!! uvarby_ind := 1) %>% droplevels()
}
full.args$newdata <- newdata
# keeping ... cause marginaleffects:: argument is missing, with no default
full.args[["..."]] <- NULL
comparisons_arguments <- full.args
# Drop that not required for marginaleffects::
exclude_args <- as.character(quote(
c(
xrange,
digits,
numeric_cov_at,
acg_asymptote,
levels_id,
avg_reffects,
deriv,
deriv_model,
ipts,
seed,
future,
future_session,
dummy_to_factor,
verbose,
expose_function,
usesavedfuns,
clearenvfuns,
envir,
plot,
showlegends,
average,
parameter,
estimate_center,
estimate_interval
)
))[-1]
if(plot) {
exclude_args <- c(exclude_args, "cross")
}
for (exclude_argsi in exclude_args) {
comparisons_arguments[[exclude_argsi]] <- NULL
}
if (!is.null(variables)) {
if (!is.list(variables)) {
set_variables <- variables
} else if (is.list(variables)) {
set_variables <- variables
if(is.null(set_variables[[xvar]])) {
if(deriv == 0) set_variables[[xvar]] <- eps
if(deriv > 0) set_variables[[xvar]] <- 0
} else if(!is.null(set_variables[[xvar]])) {
if(eval(set_variables[[xvar]]) !=0) {
if(verbose) {
message("The value of ", xvar, " is not same as used in the ",
" \n",
" model fit. Please check if this is intended")
}
}
}
}
} else if (is.null(variables)) {
if(deriv == 0) set_variables <- list(eps)
if(deriv > 0) set_variables <- list(0)
names(set_variables) <- xvar
}
if(is.null(by)) {
if(is.null(cov)) {
set_group <- FALSE
} else if(!is.null(cov)) {
set_group <- cov
if (!set_group %in% cov) {
stop('by must be one of the ', cov)
}
}
} else if(!is.null(by)) {
if (!isFALSE(by)) {
set_group <- by
} else if (isFALSE(by)) {
set_group <- FALSE
}
}
comparisons_arguments$variables <- set_variables
comparisons_arguments$by <- set_group
assign(o[[1]], model$model_info[['exefuns']][[o[[2]]]], envir = envir)
if(is.null(showlegends)) {
if(is.null(comparisons_arguments$re_formula)) {
showlegends <- FALSE
} else {
showlegends <- TRUE
}
}
# Set up datagrid
if(!is.null(datagrid)) {
if(is.data.frame(datagrid)) {
set_datagrid <- datagrid
comparisons_arguments$newdata <- set_datagrid
} else if(is.list(datagrid)) {
if(is.null(datagrid[['model']])) setmodel <- model else setmodel <- datagrid$model
if(is.null(datagrid[['newdata']])) setnewdata <- newdata else setnewdata <- datagrid$newdata
if(is.null(datagrid[['grid_type']])) setgrid_type <- "mean_or_mode" else setgrid_type <- datagrid$grid_type
if(is.null(datagrid[[xvar]])) setxvar <- newdata[[xvar]] else setxvar <- datagrid$newdata[[xvar]]
datagrid_arguments <- list(model = setmodel,
newdata = setnewdata,
grid_type = setgrid_type)
datagrid_arguments[[xvar]] <- setxvar
if(setgrid_type == "mean_or_mode") {
if(!isFALSE(set_group)) datagrid_arguments[['by']] <- set_group
} else if(setgrid_type == "balanced") {
if(!isFALSE(set_group)) datagrid_arguments[['by']] <- NULL
# correctly set comparisons_arguments[['by']] too
comparisons_arguments[['by']] <- NULL
}
set_datagrid <- do.call(marginaleffects::datagrid, datagrid_arguments)
comparisons_arguments$newdata <- set_datagrid
} else {
stop("datagrid should be a data frame or named list")
}
} else if(is.null(datagrid)) {
comparisons_arguments$newdata <- comparisons_arguments$newdata
}
# The datagrid argument is not allowed. It served its purpose by defining
# the newdata. So remove it from the arguments
comparisons_arguments[['datagrid']] <- NULL
# Somehow draw_ids not passed correctly if not specified explicitly as arg
get_draw_ids <- comparisons_arguments[['draw_ids']]
if(is.null(eval(get_draw_ids))) {
set_draw_ids <- NULL
} else if(is.numeric(eval(get_draw_ids))) {
set_draw_ids <- get_draw_ids
} else if(!eval(get_draw_ids)) {
set_draw_ids <- NULL
}
comparisons_arguments[['draw_ids']] <- set_draw_ids
# comparisons_arguments$average <- NULL
# comparisons_arguments$parameter <- NULL
# comparisons_arguments$... <- NULL
suppressWarnings({
if(!plot) {
if(!average) {
out <- do.call(marginaleffects::comparisons, comparisons_arguments)
} else if(average) {
out <- do.call(marginaleffects::avg_comparisons, comparisons_arguments)
}
}
if(plot) {
if(isFALSE(set_group)) comparisons_arguments$by <- NULL
out <- do.call(marginaleffects::plot_comparisons, comparisons_arguments)
outp <- out
if(!showlegends) outp <- outp + ggplot2::theme(legend.position = 'none')
return(outp)
}
})
out_sf <- out
out_sf <- out_sf %>%
dplyr::mutate(dplyr::across(dplyr::where(is.numeric),
~ round(., digits = digits))) %>%
data.frame()
if(is.null(reformat)) {
if(is.null(hypothesis) && is.null(equivalence)) {
reformat <- TRUE
} else {
reformat <- FALSE
}
}
if (reformat) {
out_sf <- out_sf %>%
dplyr::rename(!!as.symbol(set_names_[1]) := estimate) %>%
dplyr::rename(!!as.symbol(set_names_[2]) := conf.low) %>%
dplyr::rename(!!as.symbol(set_names_[3]) := conf.high)
data.frame()
remove_cols_ <- c('term', 'contrast', 'tmp_idx', 'predicted_lo',
'predicted_hi', 'predicted', 'rowid')
out_sf <- out_sf[,!names(out_sf) %in% remove_cols_]
row.names(out_sf) <- NULL
}
return(out_sf)
}
#' @rdname marginal_comparison.bgmfit
#' @export
marginal_comparison <- function(model, ...) {
UseMethod("marginal_comparison")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.