set_ng | R Documentation |
Set NG hyperparameters for VAR or VHAR coefficient and contemporaneous coefficient.
set_ng(
shape_sd = 0.01,
group_shape = 0.01,
group_scale = 0.01,
global_shape = 0.01,
global_scale = 0.01,
contem_global_shape = 0.01,
contem_global_scale = 0.01
)
## S3 method for class 'ngspec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.ngspec(x)
shape_sd |
Standard deviation used in MH of Gamma shape |
group_shape |
Inverse gamma prior shape for coefficient group shrinkage |
group_scale |
Inverse gamma prior scale for coefficient group shrinkage |
global_shape |
Inverse gamma prior shape for coefficient global shrinkage |
global_scale |
Inverse gamma prior scale for coefficient global shrinkage |
contem_global_shape |
Inverse gamma prior shape for contemporaneous coefficient global shrinkage |
contem_global_scale |
Inverse gamma prior scale for contemporaneous coefficient global shrinkage |
x |
Any object |
digits |
digit option to print |
... |
not used |
ngspec
object
Chan, J. C. C. (2021). Minnesota-type adaptive hierarchical priors for large Bayesian VARs. International Journal of Forecasting, 37(3), 1212-1226.
Huber, F., & Feldkircher, M. (2019). Adaptive Shrinkage in Bayesian Vector Autoregressive Models. Journal of Business & Economic Statistics, 37(1), 27-39.
Korobilis, D., & Shimizu, K. (2022). Bayesian Approaches to Shrinkage and Sparse Estimation. Foundations and TrendsĀ® in Econometrics, 11(4), 230-354.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.