View source: R/generate-process.R
| sim_mnormal | R Documentation | 
This function samples n x muti-dimensional normal random matrix.
sim_mnormal(
  num_sim,
  mu = rep(0, 5),
  sig = diag(5),
  method = c("eigen", "chol")
)
| num_sim | Number to generate process | 
| mu | Mean vector | 
| sig | Variance matrix | 
| method | Method to compute  | 
Consider x_1, \ldots, x_n \sim N_m (\mu, \Sigma).
 Lower triangular Cholesky decomposition: \Sigma = L L^T
 Standard normal generation: Z_{i1}, Z_{in} \stackrel{iid}{\sim} N(0, 1)
Z_i = (Z_{i1}, \ldots, Z_{in})^T
X_i = L Z_i + \mu
T x k matrix
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.