View source: R/summary-bayes.R
summary.normaliw | R Documentation |
summary
method for normaliw
class.
## S3 method for class 'normaliw'
summary(
object,
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
verbose = FALSE,
num_thread = 1,
...
)
## S3 method for class 'summary.normaliw'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'summary.normaliw'
knit_print(x, ...)
object |
A |
num_chains |
Number of MCMC chains |
num_iter |
MCMC iteration number |
num_burn |
Number of burn-in (warm-up). Half of the iteration is the default choice. |
thinning |
Thinning every thinning-th iteration |
verbose |
Print the progress bar in the console. By default, |
num_thread |
Number of threads |
... |
not used |
x |
|
digits |
digit option to print |
From Minnesota prior, set of coefficient matrices and residual covariance matrix have matrix Normal Inverse-Wishart distribution.
BVAR:
(A, \Sigma_e) \sim MNIW(\hat{A}, \hat{V}^{-1}, \hat\Sigma_e, \alpha_0 + n)
where \hat{V} = X_\ast^T X_\ast
is the posterior precision of MN.
BVHAR:
(\Phi, \Sigma_e) \sim MNIW(\hat\Phi, \hat{V}_H^{-1}, \hat\Sigma_e, \nu + n)
where \hat{V}_H = X_{+}^T X_{+}
is the posterior precision of MN.
summary.normaliw
class has the following components:
Variable names
Total number of the observation
Sample size used when training = totobs
- p
Lag of VAR
Dimension of the data
Matched call
Model specification (bvharspec
)
MN Mean of posterior distribution (MN-IW)
MN Precision of posterior distribution (MN-IW)
IW scale of posterior distribution (MN-IW)
IW df of posterior distribution (MN-IW)
Number of MCMC iterations
Number of MCMC burn-in
MCMC thinning
MCMC record of coefficients vector
MCMC record of upper cholesky factor
MCMC record of diagonal of cholesky factor
MCMC record of upper part of cholesky factor
MCMC record of every parameter
Posterior mean of coefficients
Posterior mean of covariance
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
BaĆbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.