Nothing
#' Species detection histories for occupancy analyses
#'
#' This function generates species detection histories that can be used in
#' single-species occupancy analyses with packages \link[unmarked:unmarked-package]{unmarked}
#' and \pkg{ubms}, as well as multi-species/community occupancy models via
#' \code{\link{communityModel}}. It generates detection histories in different formats,
#' with adjustable occasion length and occasion start time.
#'
#'
#' The function creates species detection matrices in two possible formats:
#' detection-by-date or detection-by-occasion. The start of detection histories
#' is controlled by \code{day1}:
#' \itemize{
#' \item \code{"station"}: Each station's history begins on its setup day
#' \item \code{"survey"}: All stations begin on the first day of the survey
#' \item A specific date (e.g., \code{"2015-12-31"}): All stations begin on this date
#' }
#' Dates must be in "YYYY-MM-DD" format if specified directly.
#'
#'
#' Two output formats are available via the \code{output} parameter:
#' \itemize{
#' \item \code{"binary"}: Records detection (1) or non-detection (0)
#' \item \code{"count"}: Records the number of detections per occasion
#' }
#'
#'
#' The \code{includeEffort} parameter determines how camera operation affects the output:
#' \itemize{
#' \item If \code{FALSE}: Periods when cameras were not operational or only
#' partly operational appear as NA in the detection history. This may lose
#' species record from incomplete occasions.
#' \item If \code{TRUE}: Incomplete occasions are retained. Outputs contain a
#' separate effort matrix that can be used as an observation covariate in occupancy models.
#' }
#' It is generally advisable to include effort as a covariate to account for
#' uneven sampling effort.
#'
#'
#' \code{occasionLength} controls how many days are aggregated into each sampling occasion.
#' Note that \code{occasionStartTime} has moved to \code{\link{cameraOperation}} to ensure
#' proper calculation of daily effort.
#'
#' The values of \code{stationCol} in \code{recordTable} must be matched by the
#' row names of \code{camOp} (case-insensitive), otherwise an error is raised.
#'
#' For date/time formatting, \code{recordDateTimeFormat} accepts two syntax styles:
#' \itemize{
#' \item Base R style (using \%): e.g., "\%Y-\%m-\%d \%H:\%M:\%S"
#' \item lubridate style: e.g., "ymd HMS"
#' }
#' \pkg{lubridate} will be used if there are no "\%" characters in
#' \code{recordDateTimeFormat}. The default and recommended format is
#' "YYYY-MM-DD HH:MM:SS" (e.g., "2014-09-30 22:59:59").
#'
#'
#' For multi-season studies where \code{sessionCol} was used in \code{\link{cameraOperation}},
#' the function automatically detects this structure. Set \code{unmarkedMultFrameInput = TRUE}
#' to format output for \code{unmarkedMultFrame}, with rows representing sites and columns
#' ordered by season-major, occasion-minor (e.g., season1-occasion1, season1-occasion2, etc.).
#'
#'
#' @param recordTable data.frame. the record table created by
#' \code{\link{recordTable}}
#' @param species character. species name(s) for which to compute detection histories. Can
#' be either a single species name (for use with \pkg{unmarked}/\pkg{ubms}) or a vector
#' of multiple species names (for input to \code{\link{communityModel}})
#' @param camOp The camera operation matrix as created by
#' \code{\link{cameraOperation}}
#' @param output character. Return binary detections ("binary") or counts of
#' detections ("count")
#' @param stationCol character. name of the column specifying Station ID in
#' \code{recordTable}
#' @param speciesCol character. name of the column specifying species in
#' \code{recordTable}
#' @param recordDateTimeCol character. name of the column specifying date and
#' time in \code{recordTable}
#' @param recordDateTimeFormat character. Format of column
#' \code{recordDateTimeCol} in \code{recordTable}
#' @param occasionLength integer. occasion length in days
#' @param minActiveDaysPerOccasion integer. minimum number of active trap days
#' for occasions to be included (optional)
#' @param maxNumberDays integer. maximum number of trap days per station
#' (optional)
#' @param day1 character. When should occasions begin: station setup date
#' ("station"), first day of survey ("survey"), a specific date (e.g.
#' "2015-12-31")?
#' @param buffer integer. Makes the first occasion begin a number of days after
#' station setup. (optional)
#' @param includeEffort logical. Compute trapping effort (number of active
#' camera trap days per station and occasion)?
#' @param scaleEffort logical. scale and center effort matrix to mean = 0 and
#' sd = 1?
#' @param occasionStartTime (DEPRECATED) integer. time of day (the full hour)
#' at which to begin occasions. Please use argument \code{occasionStartTime} in
#' \code{\link{cameraOperation}} instead.
#' @param datesAsOccasionNames If \code{day1 = "survey"}, occasion names in the
#' detection history will be composed of first and last day of that occasion.
#' @param timeZone character. Must be a value returned by
#' \code{\link[base:timezones]{OlsonNames}}
#' @param writecsv logical. Should the detection history be saved as a .csv?
#' @param outDir character. Directory into which detection history .csv file is
#' saved
#' @param unmarkedMultFrameInput logical. Return input for multi-season
#' occupancy models in unmarked (argument "y" in
#' \code{\link[unmarked]{unmarkedMultFrame}}?
#'
#' @return If a single species is provided (typical for \pkg{unmarked}/\pkg{ubms} analyses),
#' returns a list with either 1, 2 or 3 elements depending on the value of \code{includeEffort}
#' and \code{scaleEffort}:
#' \item{detection_history}{A species detection matrix}
#' \item{effort}{A matrix giving the number of active camera trap days per station and
#' occasion (= camera trapping effort). Only returned if \code{includeEffort = TRUE}}
#' \item{effort_scaling_parameters}{Scaling parameters of the effort matrix. Only
#' returned if \code{includeEffort} and \code{scaleEffort} are \code{TRUE}}
#'
#' If multiple species are provided (for use with \code{\link{communityModel}}), returns
#' a similar list structure but with \code{detection_history} containing a named list of
#' detection matrices, one for each species. The effort matrix is identical for all
#' species and thus returned only once.
#'
#'
#' @section Warning: Setting \code{output = "count"} returns a count of
#' detections, not individuals. These counts are not suitable for abundance modeling
#' (e.g., N-mixture models) as they do not represent individual animals.
#'
#' For important information about the \code{timeZone} parameter, please refer to
#' the "Data Extraction" vignette (\code{vignette("DataExtraction")} or online at
#' \url{https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.pdf}).
#'
#' @author Juergen Niedballa
#'
#' @examples
#'
#'
#' # define image directory
#' wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")
#'
#' # load station information
#' data(camtraps)
#'
#' # create camera operation matrix
#' camop_no_problem <- cameraOperation(CTtable = camtraps,
#' stationCol = "Station",
#' setupCol = "Setup_date",
#' retrievalCol = "Retrieval_date",
#' hasProblems = FALSE,
#' dateFormat = "dmy"
#' )
#'
#' \dontrun{
#' if (Sys.which("exiftool") != ""){ # only run this function if ExifTool is available
#' recordTableSample <- recordTable(inDir = wd_images_ID,
#' IDfrom = "directory",
#' minDeltaTime = 60,
#' deltaTimeComparedTo = "lastRecord",
#' exclude = "UNID",
#' timeZone = "Asia/Kuala_Lumpur"
#' )
#' }
#' }
#' data(recordTableSample) # load the record history, as created above
#'
#'
#' # compute detection history for a species
#'
#' # without trapping effort
#' DetHist1 <- detectionHistory(recordTable = recordTableSample,
#' camOp = camop_no_problem,
#' stationCol = "Station",
#' speciesCol = "Species",
#' recordDateTimeCol = "DateTimeOriginal",
#' species = "VTA",
#' occasionLength = 7,
#' day1 = "station",
#' datesAsOccasionNames = FALSE,
#' includeEffort = FALSE,
#' timeZone = "Asia/Kuala_Lumpur"
#' )
#'
#' DetHist1 # this is a list with 1 element
#' DetHist1$detection_history # this is the contained detection/non-detection matrix
#'
#'
#' # with effort / using base R to define recordDateTimeFormat
#' DetHist2 <- detectionHistory(recordTable = recordTableSample,
#' camOp = camop_no_problem,
#' stationCol = "Station",
#' speciesCol = "Species",
#' recordDateTimeCol = "DateTimeOriginal",
#' species = "VTA",
#' occasionLength = 7,
#' day1 = "station",
#' datesAsOccasionNames = FALSE,
#' includeEffort = TRUE,
#' scaleEffort = FALSE,
#' timeZone = "Asia/Kuala_Lumpur"
#' )
#'
#' DetHist2$detection_history # detection history (alternatively, use: DetHist2[[1]])
#' DetHist2$effort # effort (alternatively, use: DetHist2[[2]])
#'
#' # with effort / using lubridate package to define recordDateTimeFormat
#' DetHist2_lub <- detectionHistory(recordTable = recordTableSample,
#' camOp = camop_no_problem,
#' stationCol = "Station",
#' speciesCol = "Species",
#' recordDateTimeCol = "DateTimeOriginal",
#' recordDateTimeFormat = "ymd HMS",
#' species = "VTA",
#' occasionLength = 7,
#' day1 = "station",
#' datesAsOccasionNames = FALSE,
#' includeEffort = TRUE,
#' scaleEffort = FALSE,
#' timeZone = "Asia/Kuala_Lumpur"
#' )
#'
#' DetHist2_lub$detection_history # detection history (alternatively, use: DetHist2_lub[[1]])
#' DetHist2_lub$effort # effort (alternatively, use: DetHist2_lub[[2]])
#'
#'
#' # multi-season detection history
#'
#' # load multi-season data
#' data(camtrapsMultiSeason)
#' data(recordTableSampleMultiSeason)
#'
#' # multi-season camera operation matrix
#' camop_season <- cameraOperation(CTtable = camtrapsMultiSeason,
#' stationCol = "Station",
#' setupCol = "Setup_date",
#' sessionCol = "session",
#' retrievalCol = "Retrieval_date",
#' hasProblems = TRUE,
#' dateFormat = "dmy"
#' )
#'
#' # multi-season detection history
#' DetHist_multi_season <- detectionHistory(recordTable = recordTableSampleMultiSeason,
#' camOp = camop_season,
#' stationCol = "Station",
#' speciesCol = "Species",
#' species = "VTA",
#' occasionLength = 10,
#' day1 = "station",
#' recordDateTimeCol = "DateTimeOriginal",
#' includeEffort = TRUE,
#' scaleEffort = FALSE,
#' timeZone = "UTC",
#' unmarkedMultFrameInput = TRUE
#' )
#'
#' DetHist_multi_season
#'
#'
#' # Multi-species example for community occupancy analysis with communityModel()
#' DetHist_multi_species <- detectionHistory(recordTable = recordTableSample,
#' species = c("VTA", "PBE", "EGY"), # multiple species
#' camOp = camop_no_problem,
#' stationCol = "Station",
#' speciesCol = "Species",
#' recordDateTimeCol = "DateTimeOriginal",
#' occasionLength = 7,
#' day1 = "station",
#' includeEffort = TRUE,
#' scaleEffort = FALSE,
#' timeZone = "Asia/Kuala_Lumpur"
#' )
#'
#'
#' # bundle input data for communityModel
#' data_list <- list(ylist = DetHist_multi_species$detection_history,
#' siteCovs = camtraps,
#' obsCovs = list(effort = DetHist_multi_species$effort))
#'
#'
#' \dontrun{
#'
#' # create community model
#' mod.jags <- communityModel(data_list,
#' ...) # model specification
#' }
#'
#' @export detectionHistory
#'
detectionHistory <- function(recordTable,
species,
camOp,
output = c("binary", "count"),
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "ymd HMS",
occasionLength,
minActiveDaysPerOccasion,
maxNumberDays,
day1 = "survey",
buffer,
includeEffort = TRUE,
scaleEffort = FALSE,
occasionStartTime = "deprecated",
datesAsOccasionNames = FALSE,
timeZone,
writecsv = FALSE,
outDir,
unmarkedMultFrameInput)
{
wd0 <- getwd()
on.exit(setwd(wd0))
# Check if species is vector
is_multispecies <- length(species) > 1
# single-species case ----
if(!is_multispecies) {
#################
# check input
# check column names
checkForSpacesInColumnNames(stationCol = stationCol, speciesCol = speciesCol, recordDateTimeCol = recordDateTimeCol)
recordTable <- dataFrameTibbleCheck(df = recordTable)
if(!stationCol %in% colnames(recordTable)) stop(paste('stationCol = "', stationCol, '" is not a column name in recordTable', sep = ''), call. = FALSE)
if(!speciesCol %in% colnames(recordTable)) stop(paste('speciesCol = "', speciesCol, '" is not a column name in recordTable', sep = ''), call. = FALSE)
if(!recordDateTimeCol %in% colnames(recordTable)) stop(paste('recordDateTimeCol = "', recordDateTimeCol, '" is not a column name in recordTable', sep = ''), call. = FALSE)
output <- match.arg (output)
if(!hasArg(species)) stop("'species' is not defined", call. = FALSE)
if(!is.character(species)) stop("species must be of class character", call. = FALSE)
# if(!length(species) == 1) stop("species may only contain one value", call. = FALSE)
if(!hasArg(occasionLength)) stop("'occasionLength' is not defined", call. = FALSE)
if(!hasArg(recordTable)) stop("'recordTable' is not defined", call. = FALSE)
if(!is.data.frame(recordTable)) stop("'recordTable' must be a data.frame", call. = FALSE)
if(!hasArg(camOp)) stop("'camOp' is not defined", call. = FALSE)
if(!inherits(camOp, "matrix")) stop ("camOp must be a matrix", call. = FALSE)
if(!length(stationCol) == 1) stop("stationCol may only contain one value", call. = FALSE)
recordTable[,stationCol] <- as.character(recordTable[,stationCol])
if(!is.character(stationCol)) stop("stationCol must be a character", call. = FALSE)
if(!length(speciesCol) == 1) stop("speciesCol may only contain one value", call. = FALSE)
recordTable[,speciesCol] <- as.character(recordTable[,speciesCol])
if(!is.character(speciesCol)) stop("speciesCol must be a character", call. = FALSE)
if(!length(recordDateTimeCol) == 1) stop("recordDateTimeCol may only contain one value", call. = FALSE)
recordTable[,recordDateTimeCol] <- as.character(recordTable[,recordDateTimeCol]) # make character to get rid of attributes. Will later assign time zone again
if(!is.character(recordDateTimeCol)) stop("recordDateTimeCol must be a character", call. = FALSE)
if(hasArg(timeZone) == FALSE) {
warning("timeZone is not specified. Assuming UTC", call. = FALSE)
timeZone <- "UTC"
}
if(!is.element(timeZone , OlsonNames())){
stop("timeZone must be an element of OlsonNames()")
}
if(!is.logical(writecsv)) stop("writecsv must be logical (TRUE / FALSE)", call. = FALSE)
if(hasArg(occasionStartTime)) warning("'occasionStartTime' is deprecated and will be removed in the next release. It is now found in cameraOperation()")
# if(length(occasionStartTime) != 1) stop("occasionStartTime must have length 1")
# occasionStartTime <- as.integer(round(occasionStartTime))
# if(occasionStartTime != 0 & !is.integer(occasionStartTime)) {stop ("occasionStartTime must be between 0 and 23", call. = FALSE)}
# if(occasionStartTime < 0 | occasionStartTime >= 24){ stop ("occasionStartTime must be between 0 and 23", call. = FALSE)}
occasionLength <- as.integer(round(occasionLength))
if(length(occasionLength) != 1) stop("occasionLength may only contain one value", call. = FALSE)
if(!is.numeric(occasionLength)) stop("occasionLength must be a positive integer", call. = FALSE)
if(occasionLength <= 0) stop("occasionLength must be a positive integer and not 0", call. = FALSE)
if(occasionLength > ncol(camOp)) stop("occasionLength must be smaller than the total number of days in camOp", call. = FALSE)
if(hasArg(maxNumberDays)){
maxNumberDays <- as.integer(maxNumberDays)
if(maxNumberDays > ncol(camOp)) stop("maxNumberDays is larger than the number of columns of camOp", call. = FALSE)
if(maxNumberDays < occasionLength) stop("maxNumberDays must be larger than or equal to occasionLength", call. = FALSE)
}
if(hasArg(buffer)) {
if(!is.numeric(buffer)) stop("buffer must be number", call. = FALSE)
buffer <- round(buffer)
if(!buffer >= 1) stop("if buffer is defined, it must be 1 or higher", call. = FALSE)
}
if(!speciesCol %in% colnames(recordTable)) stop(paste("speciesCol", speciesCol, "is not a column name in recordTable"), call. = FALSE)
if(!recordDateTimeCol %in% colnames(recordTable)) stop(paste("recordDateTimeCol", recordDateTimeCol, "is not a column name in recordTable"), call. = FALSE)
if(!stationCol %in% colnames(recordTable)) stop(paste("stationCol", stationCol, "is not a column name in recordTable"), call. = FALSE)
if(!species %in% recordTable[,speciesCol]) stop("species ", species, " not found in speciesCol of recordTable", call. = FALSE)
if(writecsv == TRUE){
if(!file.exists(outDir)){stop("outDir does not exist", call. = FALSE)}
}
if(includeEffort){
# if(!hasArg(scaleEffort)) stop("scaleEffort must be defined if includeEffort is TRUE", call. = FALSE)
if(!is.logical(scaleEffort)) stop("scaleEffort must be logical (TRUE or FALSE)", call. = FALSE)
} else {scaleEffort <- FALSE}
if(hasArg(minActiveDaysPerOccasion)){
if(!is.numeric(minActiveDaysPerOccasion)) stop("minActiveDaysPerOccasion must be a number", call. = FALSE)
if(!minActiveDaysPerOccasion <= occasionLength) stop("minActiveDaysPerOccasion must be smaller than or equal to occasionLength", call. = FALSE)
}
#############
# bring date, time, station ids into shape
subset_species <- recordTable[recordTable[,speciesCol] == species,]
subset_species$DateTime2 <- parseDateTimeObject(inputColumn = subset_species[,recordDateTimeCol],
dateTimeFormat = recordDateTimeFormat,
timeZone = timeZone,
checkNA_out = FALSE)
if(any(is.na(subset_species$DateTime2))) stop(paste(sum(is.na(subset_species$DateTime2)), "out of",
nrow(subset_species),
"entries in recordDateTimeCol of recordTable could not be interpreted using recordDateTimeFormat (NA). row",
paste(rownames(subset_species)[which(is.na(subset_species$DateTime2))], collapse = ", ")))
# check consistency of argument day1
if(!is.character(day1)) stop("day1 must be a character", call. = FALSE)
day1 <- tolower(day1)
if(day1 == "survey") {day1switch <- 1} else {
if(day1 == "station") {day1switch <- 2} else {
try(date.test <- as.Date(day1), silent = TRUE)
if(!exists("date.test")) stop("day1 is not specified correctly. It can only be 'station', 'survey', or a date formatted as 'YYYY-MM-DD', e.g. '2016-12-31'")
if(!inherits(date.test, "Date")) stop('could not interpret argument day1: can only be "station", "survey" or a specific date (e.g. "2015-12-31")')
if(hasArg(buffer)) stop("if buffer is defined, day1 can only be 'survey' or 'station'")
suppressWarnings(rm(date.test))
day1switch <- 3
}
}
# check that column names can be interpreted as day, as save
camOp <- checkCamOpColumnNames (cameraOperationMatrix = camOp)
# check if there's conflict in occasionStartTime. Error if so.
if(hasArg(occasionStartTime)){
if(occasionStartTime != attributes(camOp)$occasionStartTime){
stop(paste("occasionStartTime", occasionStartTime, "differs from occasionStartTime in camOp", attributes(camOp)$occasionStartTime))
}
}
occasionStartTime <- attributes(camOp)$occasionStartTime
# extract station / camera / session information from row names of camera operation matrix
camop.info.df <- deparseCamOpRownames(camOp)
# get information about station / session / camera IDs
if("session" %in% colnames(camop.info.df)){
if("camera" %in% colnames(camop.info.df)) stop("currently detectionHistory does not support camera-specific camera operation matrices when session/seasons are defined. Please run cameraOperation with byCamera = FALSE.", call. = FALSE)
if(!is.logical(unmarkedMultFrameInput)) stop("unmarkedMultFrameInput must be logical (TRUE / FALSE)", call. = FALSE)
# assign session IDs to record table (this will also change station ID to station__session)
subset_species <- assignSessionIDtoRecordTable(recordTable_tmp = subset_species,
camOp = camOp,
dateTimeCol = "DateTime2", #recordDateTimeCol,
stationCol = stationCol,
sessionCol = "session")
} else {
if(hasArg(unmarkedMultFrameInput)) warning("'unmarkedMultFrameInput' is defined, but I cannot find session IDs in the rownames of camOp. Check the row names format and maybe run camtrapR:::deparseCamOpRownames(camOp) to see if it can be interpreted", call. = FALSE)
}
cam.op.worked0 <- as.matrix(camOp)
if(all(as.character(unique(subset_species[,stationCol])) %in% rownames(cam.op.worked0)) == FALSE){
#if(all(as.character(unique(subset_species[,stationCol])) %in% camop.info.df$station) == FALSE){
(stop("Not all values of stationCol in recordTable are matched by rownames of camOp"))
}
################################################
# compute date range of stations and records
arg.list0 <- list(cam.op = cam.op.worked0,
subset_species_tmp = subset_species,
stationCol_tmp = stationCol,
day1_tmp = day1,
occasionStartTime_tmp = occasionStartTime,
timeZone_tmp = timeZone)
if(hasArg(maxNumberDays)) arg.list0 <- c(arg.list0, maxNumberDays_tmp = maxNumberDays)
if(hasArg(buffer)) arg.list0 <- c(arg.list0, buffer_tmp = buffer)
date_ranges <- do.call(createDateRangeTable, arg.list0)
rm(arg.list0)
#######################
# adjust camera operation matrix
cam.op.worked <- adjustCameraOperationMatrix(cam.op = cam.op.worked0,
date_ranges2 = date_ranges,
timeZone_tmp = timeZone,
day1_2 = day1)
# append occasionStartTime (if != 0) to column names for output table
if(occasionStartTime != 0){
colnames(cam.op.worked) <- paste(colnames(cam.op.worked), "+", occasionStartTime, "h", sep = "")
}
######################
# calculate trapping effort by station and occasion
arg.list0 <- list(cam.op = cam.op.worked,
occasionLength2 = occasionLength,
scaleEffort2 = scaleEffort,
includeEffort2 = includeEffort,
occasionStartTime2 = occasionStartTime)
if(hasArg(minActiveDaysPerOccasion)) arg.list0 <- c(arg.list0, minActiveDaysPerOccasion2 = minActiveDaysPerOccasion)
effort.tmp <- do.call(calculateTrappingEffort, arg.list0)
rm(arg.list0)
effort <- effort.tmp[[1]]
if(isTRUE(scaleEffort)) scale.eff.tmp.attr <- effort.tmp[[2]]
###################
# remove records that fall into buffer period or were taken after maxNumberDays
subset_species <- cleanSubsetSpecies(subset_species2 = subset_species,
stationCol2 = stationCol,
date_ranges2 = date_ranges)
############
# define the 1st day of the effective survey period.
if(day1 %in% c("survey")){
time2 <- date_ranges$start_first_occasion_survey[match(subset_species[,stationCol], rownames(date_ranges))]
} else {
time2 <- date_ranges$start_first_occasion[match(subset_species[,stationCol], rownames(date_ranges))]
}
# calculate the occasion each record belongs into from the time difference between records and beginning of the first occasion
subset_species$occasion <- as.numeric(ceiling((difftime(time1 = subset_species$DateTime2,
time2 = time2,
units = "secs",
tz = timeZone)
/ (occasionLength * 86400))))
# check if occasions are valid
if(max(subset_species$occasion) > ncol(effort)) stop("Occasions exceeding total number of occasions calculated. This is a bug. I'm Sorry. Please report it.", call. = FALSE)
if(any(subset_species$occasion == 0)) {
# this is old code that works on POSIXlt objects, not POSIXct. Need to convert first
subset_species$DateTime2_POSIXlt <- as.POSIXlt(subset_species$DateTime2)
# identify records with time 00:00:00
idx_records_without_time <- which(subset_species$DateTime2_POSIXlt$hour == 0 &
subset_species$DateTime2_POSIXlt$min == 0 &
subset_species$DateTime2_POSIXlt$sec == 0)
# add 1 second and recalculate occasion
if(length(idx_records_without_time) >= 1) {
warning(paste(length(idx_records_without_time), " records out of ", nrow(subset_species),
" seem to have no time information. Please provide time also. I will assume time of these records was occasionStartTime + 1 second (",
occasionStartTime, ":00:01), but please treat this as experimental.", sep = ""), call. = FALSE)
subset_species$DateTime2_POSIXlt$sec <- 1
subset_species$DateTime2_POSIXlt$hour <- occasionStartTime
subset_species$DateTime2 <- as.POSIXct(subset_species$DateTime2_POSIXlt)
# recalculate occasions with new date/time
subset_species$occasion <- as.numeric(ceiling((difftime(time1 = subset_species$DateTime2,
time2 = time2,
units = "secs",
tz = timeZone)
/ (occasionLength * 86400))))
if(any(subset_species$occasion == 0)) stop("I tried to fix the date-only recordDateTimeCol, but there is still occasions with value 0. Please provide date and time in recordDateTimeCol.", call. = FALSE)
} else {
stop("Occasion 0 calculated for at least one record. If recordDateTimeCol contains date and time (it seems they do), this is likely a bug. I am sorry. Please report it.", call. = FALSE)}
}
if(min(subset_species$occasion) < 0) {stop("Negative occasions calculated for at least one record. This is a bug. I'm Sorry. Please report it.", call. = FALSE)}
############
# make detection history
record.hist <- effort # start with effort (including NAs)
record.hist <- ifelse(!is.na(record.hist), 0, record.hist) # set all cells 0 (unless they are NA)
rownames(record.hist) <- rownames(cam.op.worked)
# identify occasions during which there were records (and how many)
# binary: values = occasion
# count: values = number of records, names = occasion
if(output == "binary") occasions.by.station <- tapply(X = subset_species$occasion, INDEX = subset_species[,stationCol], FUN = unique, simplify = FALSE)
if(output == "count") occasions.by.station <- tapply(X = subset_species$occasion, INDEX = subset_species[,stationCol], FUN = table, simplify = FALSE)
# if(occasionLength == 1){ # occasion length = 1
# record.hist <- cam.op.worked
# record.hist <- ifelse(record.hist == 0, NA, record.hist) # if cameras not operational, set NA
# record.hist <- ifelse(record.hist >= 1, 0, record.hist) # if cameras operational, set to 0
#
# # identify occasions during which there were records (and how many)
# if(output == "binary") occasions.by.station <- tapply(X = subset_species$occasion, INDEX = subset_species[,stationCol], FUN = unique, simplify = FALSE)
# if(output == "count") occasions.by.station <- tapply(X = subset_species$occasion, INDEX = subset_species[,stationCol], FUN = table, simplify = FALSE)
#
# fill detection matrix with 1 (or count) in appropriate cells
for(xyz in which(sapply(occasions.by.station, FUN = function(x){!is.null(x)}))){
if(output == "binary"){
if(any(occasions.by.station[[xyz]] < 0)) stop("this is a bug in the function (DH_error1.binary). Please report it.", call. = FALSE)
if(any(occasions.by.station[[xyz]] > ncol(record.hist))) stop("this is a bug in the function (DH_error2.binary). Please report it.", call. = FALSE)
record.hist[match(names(occasions.by.station)[xyz], rownames(record.hist)),
occasions.by.station[[xyz]]] <- 1
}
if(output == "count") {
if(any(as.numeric(names(occasions.by.station[[xyz]])) < 0)) stop("this is a bug in the function (DH_error1.count). Please report it.", call. = FALSE)
if(any(as.numeric(names(occasions.by.station[[xyz]])) > ncol(record.hist))) stop("this is a bug in the function (DH_error2.count). Please report it.", call. = FALSE)
record.hist[match(names(occasions.by.station)[xyz], rownames(record.hist)),
as.numeric(names(occasions.by.station[[xyz]]))] <- occasions.by.station[[xyz]]
}
}
# ensure that occasions with NA or 0 effort are NA in detectionHistory
if(occasionLength == 1){
record.hist[is.na(cam.op.worked)] <- NA # remove the records that were taken when cams were NA (redundant with above: # remove records taken after day1 + maxNumberDays)
if(isFALSE(scaleEffort)) record.hist[cam.op.worked == 0] <- NA
} else {
record.hist[is.na(effort)] <- NA # just to make sure NA stays NA
if(isFALSE(scaleEffort)) record.hist[effort == 0] <- NA
}
# rm(occasions.by.station, xyz)
# } else { # occasion length > 1
# record.hist <- effort # start with effort (including NAs)
# record.hist <- ifelse(!is.na(record.hist), 0, record.hist) # set all cells 0 (unless they are NA)
# rownames(record.hist) <- rownames(cam.op.worked)
#
# # identify occasions during which there were records (and how many)
# # binary: values = occasion
# # count: values = number of records, names = occasion
# if(output == "binary") occasions.by.station <- tapply(X = subset_species$occasion, INDEX = subset_species[,stationCol], FUN = unique, simplify = FALSE)
# if(output == "count") occasions.by.station <- tapply(X = subset_species$occasion, INDEX = subset_species[,stationCol], FUN = table, simplify = FALSE)
#
# fill detection matrix with "1" (or count) in appropriate cells
# for(xyz in which(sapply(occasions.by.station, FUN = function(x){!is.null(x)}))){
# if(output == "binary") record.hist[match(names(occasions.by.station)[xyz], rownames(record.hist)),
# occasions.by.station[[xyz]]] <- 1
# if(output == "count") record.hist[match(names(occasions.by.station)[xyz], rownames(record.hist)),
# as.numeric(names(occasions.by.station[[xyz]]))] <- occasions.by.station[[xyz]]
# }
# record.hist[is.na(effort)] <- NA # just to make sure NA stays NA
# }
# assign row names to output
row.names(record.hist) <- row.names(effort) <- rownames(cam.op.worked)
# assign column names
if(isTRUE(datesAsOccasionNames)){
seq.tmp <- seq(from = 1, by = occasionLength, length.out = ncol(record.hist))
if(occasionStartTime != 0){
colnames.tmp <- paste(colnames(cam.op.worked)[seq.tmp],
colnames(cam.op.worked)[seq.tmp + occasionLength], sep = "_")
} else {
colnames.tmp <- paste(colnames(cam.op.worked)[seq.tmp],
colnames(cam.op.worked)[seq.tmp + occasionLength - 1], sep = "_")
}
# make sure the last occasion ends on the last day
if(day1 == "station"){
colnames.tmp[length(colnames.tmp)] <- paste(colnames(cam.op.worked)[max(seq.tmp)],
colnames(cam.op.worked)[ncol(cam.op.worked)],
sep = "_")
} else { # if day1 = "survey" or date
colnames.tmp[length(colnames.tmp)] <- paste(colnames(cam.op.worked)[max(seq.tmp)],
max(as.Date(date_ranges$end_last_occasion)),
sep = "_")
}
colnames(record.hist) <- colnames(effort) <- colnames.tmp
} else {
colnames(record.hist) <- colnames(effort) <- paste("o", seq(1,ncol(record.hist), by = 1), sep = "")
}
## if multi-season object, make input for unmarkedMultFrame if desired
if("session" %in% colnames(camop.info.df)){
if(unmarkedMultFrameInput){
record.hist.season.list <- split(as.data.frame(record.hist), f = camop.info.df$session)
effort.season.list <- split(as.data.frame(effort), f = camop.info.df$session)
all_stations <- unique(camop.info.df$station)
# add missing stations for individual seasons
record.hist.season.list2 <- lapply(record.hist.season.list, FUN = function(x){
deparse_tmp <- deparseCamOpRownames(x)
x2 <- matrix(NA, ncol = ncol(x), nrow = length(all_stations))
rownames(x2) <- all_stations
colnames(x2) <- colnames(x)
x2[match(deparse_tmp$station, all_stations), ] <- as.matrix(x)
x2
})
effort.season.list2 <- lapply(effort.season.list, FUN = function(x){
deparse_tmp <- deparseCamOpRownames(x)
x2 <- matrix(NA, ncol = ncol(x), nrow = length(all_stations))
rownames(x2) <- all_stations
colnames(x2) <- colnames(x)
x2[match(deparse_tmp$station, all_stations), ] <- as.matrix(x)
x2
})
# # get detection history and effort into separate lists
# detHist_season_list_det <- lapply(detHist_season_list, FUN = function(x) {x$detection_history})
# detHist_season_list_effort <- lapply(detHist_season_list, FUN = function(x) {x$effort})
# add NA columns to make sure all detection histories / effort matrices have same number of occasions (= identical number of columns)
ncol_by_season <- sapply(record.hist.season.list, FUN = ncol)
#detHist_season_list_det <- lapply(detHist_season_list, FUN = function(x) {x$detection_history})
#detHist_season_list_effort <- lapply(detHist_season_list, FUN = function(x) {x$effort})
detHist_season_list_det_padded <- lapply(record.hist.season.list2,
FUN = padMatrixWithNA,
ncol_desired = max(ncol_by_season))
detHist_season_list_effort_padded <- lapply(effort.season.list2,
FUN = padMatrixWithNA,
ncol_desired = max(ncol_by_season))
# combine detection histories for all seasons (effort also) into wide format
record.hist <- do.call(what = "cbind",
args = detHist_season_list_det_padded)
effort <- do.call(what = "cbind",
args = detHist_season_list_effort_padded)
}
}
################################################
# save output as table
if(day1switch == 1) day1string <- "_first_day_from_survey"
if(day1switch == 2) day1string <- "_first_day_by_station"
if(day1switch == 3) day1string <- paste("_first_day", day1, sep = "_")
effortstring <- ifelse(isTRUE(includeEffort), "with_effort__", "no_effort__")
maxNumberDaysstring <- ifelse(hasArg(maxNumberDays), paste("max",maxNumberDays,"days_", sep = ""), "")
if(isTRUE(includeEffort)){
scaleEffortstring <- ifelse(isTRUE(scaleEffort), "scaled_", "not_scaled_")
} else {
scaleEffortstring <- ""
}
# create names for the csv files
outtable.name <- paste(species, "__detection_history__", effortstring,
occasionLength, "_days_per_occasion_",
maxNumberDaysstring,
"_occasionStart", occasionStartTime,"h_",
day1string, "__",
Sys.Date(),
".csv", sep = "")
outtable.name.effort <- paste(species, "__effort__",
scaleEffortstring,
occasionLength, "_days_per_occasion_",
maxNumberDaysstring,
"_occasionStart", occasionStartTime,"h_",
day1string, "__",
Sys.Date(),
".csv", sep = "")
outtable.name.effort.scale <- paste(species, "__effort_scaling_parameters__",
occasionLength, "_days_per_occasion_",
maxNumberDaysstring,
"_occasionStart", occasionStartTime,"h_",
day1string, "__",
Sys.Date(),
".csv", sep = "")
if(writecsv){
setwd(outDir)
write.csv(record.hist, file = outtable.name)
if(isTRUE(includeEffort)){
write.csv(effort, file = outtable.name.effort)
if(hasArg(scaleEffort)){
if(scaleEffort) write.csv(scale.eff.tmp.attr, file = outtable.name.effort.scale)
}
}
}
if(includeEffort){
if(scaleEffort){
return(list(detection_history = record.hist,
effort = effort,
effort_scaling_parameters = scale.eff.tmp.attr))
} else {
return(list(detection_history = record.hist,
effort = effort))
}
} else {
return(list(detection_history = record.hist))
}
} # end is_multispecies
# Multi-species case ----
# Check if all species are in the record table
species_not_found <- species[!species %in% recordTable[[speciesCol]]]
if(length(species_not_found) > 0) {
stop(paste("The following species were not found in recordTable:",
paste(species_not_found, collapse = ", ")), call. = FALSE)
}
# Get the original call minus the species argument which we're modifying
call_args <- match.call(expand.dots = FALSE)
call_args$species <- NULL # remove species as we'll modify it
# Convert to list for manipulation
call_list <- as.list(call_args)[-1] # -1 removes the function name
# Create the lapply call with only defined arguments
results <- lapply(species, function(sp) {
# Add current species to argument list
call_list$species <- sp
# Execute call with only the arguments that were provided
do.call(detectionHistory, call_list)[[1]]
})
names(results) <- species
# Get effort matrix from first species result (they're identical)
call_list$species <- species[1]
full_result <- do.call(detectionHistory, call_list)
# Return modified structure
if(includeEffort) {
if(scaleEffort) {
return(list(
detection_history = results,
effort = full_result$effort,
effort_scaling_parameters = full_result$effort_scaling_parameters
))
} else {
return(list(
detection_history = results,
effort = full_result$effort
))
}
} else {
return(list(detection_history = results))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.