Nothing
#' Perform unconditional decomposition with nuisance functions estimated beforehand
#'
#' This function gives the user full control over the estimation of the nuisance functions.
#' For the unconditional decomposition, three nuisance functions (YgivenGX.Pred_D0, YgivenGX.Pred_D1, and DgivenGX.Pred) need to be estimated.
#' The nuisance functions should be estimated using cross-fitting if Donsker class is not assumed.
#'
#' @param Y Outcome. The name of a numeric variable.
#' @param D Treatment status. The name of a binary numeric variable taking values of 0 and 1.
#' @param G Advantaged group membership. The name of a binary numeric variable taking values of 0 and 1.
#' @param YgivenGX.Pred_D0 A numeric vector of predicted Y values given X, G, and D=0. Vector length=nrow(data).
#' @param YgivenGX.Pred_D1 A numeric vector of predicted Y values given X, G, and D=1. Vector length=nrow(data).
#' @param DgivenGX.Pred A numeric vector of predicted D values given X and G. Vector length=nrow(data).
#' @param data A data frame.
#' @param alpha 1-alpha confidence interval.
#' @param weight Sampling weights. The name of a numeric variable. If unspecified, equal weights are used. Technically, the weight should be a deterministic function of X and G.
#'
#' @return A list of estimates.
#'
#' @export
#'
#' @examples
#' # This example will take a minute to run.
#' \donttest{
#' data(exp_data)
#'
#' Y="outcome"
#' D="treatment"
#' G="group_a"
#' X=c("Q","confounder")
#' data=exp_data
#'
#' set.seed(1)
#'
#' ### estimate the nuisance functions with cross-fitting
#' sample1 <- sample(nrow(data), floor(nrow(data)/2), replace=FALSE)
#' sample2 <- setdiff(1:nrow(data), sample1)
#'
#' ### outcome regression model
#'
#' message <- utils::capture.output( YgivenDGX.Model.sample1 <-
#' caret::train(stats::as.formula(paste(Y, paste(D,G,paste(X,collapse="+"),sep="+"), sep="~")),
#' data=data[sample1,], method="ranger", trControl=caret::trainControl(method="cv"),
#' tuneGrid=expand.grid(mtry=c(2,4),splitrule=c("variance"),min.node.size=c(50,100))) )
#' message <- utils::capture.output( YgivenDGX.Model.sample2 <-
#' caret::train(stats::as.formula(paste(Y, paste(D,G,paste(X,collapse="+"),sep="+"), sep="~")),
#' data=data[sample2,], method="ranger", trControl=caret::trainControl(method="cv"),
#' tuneGrid=expand.grid(mtry=c(2,4),splitrule=c("variance"),min.node.size=c(50,100))) )
#'
#' ### propensity score model
#' data[,D] <- as.factor(data[,D])
#' levels(data[,D]) <- c("D0","D1") # necessary for caret implementation of ranger
#'
#' message <- utils::capture.output( DgivenGX.Model.sample1 <-
#' caret::train(stats::as.formula(paste(D, paste(G,paste(X,collapse="+"),sep="+"), sep="~")),
#' data=data[sample1,], method="ranger",
#' trControl=caret::trainControl(method="cv", classProbs=TRUE),
#' tuneGrid=expand.grid(mtry=c(1,2),splitrule=c("gini"),min.node.size=c(50,100))) )
#' message <- utils::capture.output( DgivenGX.Model.sample2 <-
#' caret::train(stats::as.formula(paste(D, paste(G,paste(X,collapse="+"),sep="+"), sep="~")),
#' data=data[sample2,], method="ranger",
#' trControl=caret::trainControl(method="cv", classProbs=TRUE),
#' tuneGrid=expand.grid(mtry=c(1,2),splitrule=c("gini"),min.node.size=c(50,100))) )
#'
#' data[,D] <- as.numeric(data[,D])-1
#'
#' ### cross-fitted predictions
#' YgivenGX.Pred_D0 <- YgivenGX.Pred_D1 <- DgivenGX.Pred <- rep(NA, nrow(data))
#'
#' pred_data <- data
#' pred_data[,D] <- 0
#' YgivenGX.Pred_D0[sample2] <- stats::predict(YgivenDGX.Model.sample1, newdata = pred_data[sample2,])
#' YgivenGX.Pred_D0[sample1] <- stats::predict(YgivenDGX.Model.sample2, newdata = pred_data[sample1,])
#'
#' pred_data <- data
#' pred_data[,D] <- 1
#' YgivenGX.Pred_D1[sample2] <- stats::predict(YgivenDGX.Model.sample1, newdata = pred_data[sample2,])
#' YgivenGX.Pred_D1[sample1] <- stats::predict(YgivenDGX.Model.sample2, newdata = pred_data[sample1,])
#'
#' pred_data <- data
#' DgivenGX.Pred[sample2] <- stats::predict(DgivenGX.Model.sample1,
#' newdata = pred_data[sample2,], type="prob")[,2]
#' DgivenGX.Pred[sample1] <- stats::predict(DgivenGX.Model.sample2,
#' newdata = pred_data[sample1,], type="prob")[,2]
#'
#' results <- cdgd0_manual(Y=Y,D=D,G=G,
#' YgivenGX.Pred_D0=YgivenGX.Pred_D0,
#' YgivenGX.Pred_D1=YgivenGX.Pred_D1,
#' DgivenGX.Pred=DgivenGX.Pred,
#' data=data)
#'
#' results}
cdgd0_manual <- function(Y,D,G,YgivenGX.Pred_D1,YgivenGX.Pred_D0,DgivenGX.Pred,data,alpha=0.05,weight=NULL) {
data <- as.data.frame(data)
zero_one <- sum(DgivenGX.Pred==0)+sum(DgivenGX.Pred==1)
if ( zero_one>0 ) {
stop(
paste("D given G and X and are exact 0 or 1 in", zero_one, "cases.", sep=" "),
call. = FALSE
)
}
### The "IPO" (individual potential outcome) function
# For each d and g value, we have IE(d,g)=\frac{\one(D=d)}{\pi(d,X,g)}[Y-\mu(d,X,g)]+\mu(d,X,g)
# We stabilize the weight by dividing the sample average of estimated weights
IPO_D0 <- (1-data[,D])/(1-DgivenGX.Pred)/mean((1-data[,D])/(1-DgivenGX.Pred))*(data[,Y]-YgivenGX.Pred_D0) + YgivenGX.Pred_D0
IPO_D1 <- data[,D]/DgivenGX.Pred/mean(data[,D]/DgivenGX.Pred)*(data[,Y]-YgivenGX.Pred_D1) + YgivenGX.Pred_D1
if (is.null(weight)) {
weight <- rep(1, nrow(data))
} else {
weight <- data[,weight]
}
weight0 <- (1-data[,G])/(1-mean(data[,G]))*weight/mean((1-data[,G])/(1-mean(data[,G]))*weight)
weight1 <- data[,G]/mean(data[,G])*weight/mean(data[,G]/mean(data[,G])*weight)
### The one-step estimate of \xi_{dg} and \xi_{dgg'}
psi_00 <- mean( weight0*IPO_D0 )
psi_01 <- mean( weight1*IPO_D0 )
psi_10 <- mean( weight0*IPO_D1 )
psi_11 <- mean( weight1*IPO_D1 )
# Note that this is basically DML2. We could also use DML1:
#psi_00_S1 <- mean( (1-data[sample1,G])/(1-mean(data[sample1,G]))*IPO_D0[sample1] ) # sample 1 estimate
#psi_00_S2 <- mean( (1-data[sample2,G])/(1-mean(data[sample2,G]))*IPO_D0[sample2] ) # sample 2 estimate
#psi_00 <- (1/2)*(psi_00_S1+psi_00_S2)
#psi_01_S1 <- mean( data[sample1,G]/mean(data[sample1,G])*IPO_D0[sample1] ) # sample 1 estimate
#psi_01_S2 <- mean( data[sample1,G]/mean(data[sample1,G])*IPO_D0[sample2] ) # sample 2 estimate
#psi_01 <- (1/2)*(psi_01_S1+psi_01_S2)
# There are 8 dgg' combinations, so we define a function first
psi_dgg <- function(d,g1,g2) {
if (d==0 & g1==0) {
IPO_arg <- IPO_D0
YgivenX.Pred_arg <- YgivenGX.Pred_D0}
if (d==1 & g1==0) {
IPO_arg <- IPO_D1
YgivenX.Pred_arg <- YgivenGX.Pred_D1}
if (d==0 & g1==1) {
IPO_arg <- IPO_D0
YgivenX.Pred_arg <- YgivenGX.Pred_D0}
if (d==1 & g1==1) {
IPO_arg <- IPO_D1
YgivenX.Pred_arg <- YgivenGX.Pred_D1}
weight_g1 <- as.numeric(data[,G]==g1)/mean(data[,G]==g1)*weight/mean(as.numeric(data[,G]==g1)/mean(data[,G]==g1)*weight)
weight_g2 <- as.numeric(data[,G]==g2)/mean(data[,G]==g2)*weight/mean(as.numeric(data[,G]==g2)/mean(data[,G]==g2)*weight)
psi_dgg <- mean( weight_g1*IPO_arg*mean(weight_g2*data[,D]) )
# Note that this is basically DML2. We could also use DML1:
#psi_dgg_S1 <- mean( as.numeric(data[sample1,G]==g1)/mean(data[sample1,G]==g1)*IPO_arg[sample1]*mean(as.numeric(data[sample1,G]==g2)/mean(data[sample1,G]==g2)*data[sample1,D]) +
# as.numeric(data[sample1,G]==g2)/mean(data[sample1,G]==g2)*mean(as.numeric(data[sample1,G]==g1)/mean(data[sample1,G]==g1)*YgivenX.Pred_arg)*(data[sample1,D]-mean(as.numeric(data[sample1,G]==g2)/mean(data[sample1,G]==g2)*data[sample1,D])) )
#psi_dgg_S2 <- mean( as.numeric(data[sample2,G]==g1)/mean(data[sample2,G]==g1)*IPO_arg[sample2]*mean(as.numeric(data[sample2,G]==g2)/mean(data[sample2,G]==g2)*data[sample2,D]) +
# as.numeric(data[sample2,G]==g2)/mean(data[sample2,G]==g2)*mean(as.numeric(data[sample2,G]==g1)/mean(data[sample2,G]==g1)*YgivenX.Pred_arg)*(data[sample2,D]-mean(as.numeric(data[sample2,G]==g2)/mean(data[sample2,G]==g2)*data[sample2,D])) )
#psi_dgg <- (1/2)*(psi_dgg_S1+psi_dgg_S2)
return(psi_dgg)
}
### point estimates
Y_G0 <- mean(weight0*data[,Y]) # mean outcome estimate for group 0
Y_G1 <- mean(weight1*data[,Y]) # mean outcome estimate for group 1
total <- Y_G1-Y_G0
baseline <- psi_01-psi_00
prevalence <- psi_dgg(1,0,1)-psi_dgg(1,0,0)-psi_dgg(0,0,1)+psi_dgg(0,0,0)
effect <- psi_dgg(1,1,1)-psi_dgg(0,1,1)-psi_dgg(1,0,1)+psi_dgg(0,0,1)
selection <- total-baseline-prevalence-effect
Jackson_reduction <- psi_00+psi_dgg(1,0,1)-psi_dgg(0,0,1)-Y_G0
### standard error estimates
se <- function(x) {sqrt( mean(x^2)/nrow(data) )}
total_se <- se( weight1*(data[,Y]-Y_G1) - weight0*(data[,Y]-Y_G0) )
baseline_se <- se( weight1*(IPO_D0-psi_01) - weight0*(IPO_D0-psi_00) )
# Alternatively, we could use
# se( c( data[sample1,G]/mean(data[sample1,G])*(IPO_D0[sample1]-psi_01) - (1-data[sample1,G])/(1-mean(data[sample1,G]))*(IPO_D0[sample1]-psi_00),
# data[sample2,G]/mean(data[sample2,G])*(IPO_D0[sample2]-psi_01) - (1-data[sample2,G])/(1-mean(data[sample2,G]))*(IPO_D0[sample2]-psi_00) ) )
# But there isn't a theoretically strong reason to prefer one over the other.
EIF_dgg <- function(d,g1,g2) {
if (d==0 & g1==0) {
IPO_arg <- IPO_D0
YgivenX.Pred_arg <- YgivenGX.Pred_D0
psi_arg <- psi_00}
if (d==1 & g1==0) {
IPO_arg <- IPO_D1
YgivenX.Pred_arg <- YgivenGX.Pred_D1
psi_arg <- psi_10}
if (d==0 & g1==1) {
IPO_arg <- IPO_D0
YgivenX.Pred_arg <- YgivenGX.Pred_D0
psi_arg <- psi_01}
if (d==1 & g1==1) {
IPO_arg <- IPO_D1
YgivenX.Pred_arg <- YgivenGX.Pred_D1
psi_arg <- psi_11}
weight_g1 <- as.numeric(data[,G]==g1)/mean(data[,G]==g1)*weight/mean(as.numeric(data[,G]==g1)/mean(data[,G]==g1)*weight)
weight_g2 <- as.numeric(data[,G]==g2)/mean(data[,G]==g2)*weight/mean(as.numeric(data[,G]==g2)/mean(data[,G]==g2)*weight)
return(
weight_g1*IPO_arg*mean(weight_g2*data[,D]) +
weight_g2*psi_arg*(data[,D]-mean(weight_g2*data[,D])) -
weight_g1*psi_dgg(d,g1,g2)
)
}
# Alternatively, we could use
# return(
# c(as.numeric(data[sample1,G]==g1)/mean(data[sample1,G]==g1)*IPO_arg[sample1]*mean(as.numeric(data[sample1,G]==g2)/mean(data[sample1,G]==g2)*data[sample1,D]) +
# as.numeric(data[sample1,G]==g2)/mean(data[sample1,G]==g2)*mean(as.numeric(data[sample1,G]==g1)/mean(data[sample1,G]==g1)*YgivenX.Pred_arg)*(data[sample1,D]-mean(as.numeric(data[sample1,G]==g2)/mean(data[sample1,G]==g2)*data[sample1,D])) -
# as.numeric(data[sample1,G]==g1)/mean(data[sample1,G]==g1)*psi_dgg(d,g1,g2)
# , as.numeric(data[sample2,G]==g1)/mean(data[sample2,G]==g1)*IPO_arg[sample2]*mean(as.numeric(data[sample2,G]==g2)/mean(data[sample2,G]==g2)*data[sample2,D]) +
# as.numeric(data[sample2,G]==g2)/mean(data[sample2,G]==g2)*mean(as.numeric(data[sample2,G]==g1)/mean(data[sample2,G]==g1)*YgivenX.Pred_arg)*(data[sample2,D]-mean(as.numeric(data[sample2,G]==g2)/mean(data[sample2,G]==g2)*data[sample2,D])) -
# as.numeric(data[sample2,G]==g1)/mean(data[sample2,G]==g1)*psi_dgg(d,g1,g2))
# )
# But there isn't a theoretically strong reason to prefer one over the other.
prevalence_se <- se( EIF_dgg(1,0,1)-EIF_dgg(1,0,0)-EIF_dgg(0,0,1)+EIF_dgg(0,0,0) )
effect_se <- se( EIF_dgg(1,1,1)-EIF_dgg(0,1,1)-EIF_dgg(1,0,1)+EIF_dgg(0,0,1) )
selection_se <- se( weight1*(data[,Y]-Y_G1) - weight0*(data[,Y]-Y_G0) -
( weight1*(IPO_D0-psi_01) - weight0*(IPO_D0-psi_00) ) -
( EIF_dgg(1,0,1)-EIF_dgg(1,0,0)-EIF_dgg(0,0,1)+EIF_dgg(0,0,0) ) -
( EIF_dgg(1,1,1)-EIF_dgg(0,1,1)-EIF_dgg(1,0,1)+EIF_dgg(0,0,1) ) )
Jackson_reduction_se <- se( weight0*(IPO_D0-psi_00)+EIF_dgg(1,0,1)-EIF_dgg(0,0,1)-weight0*(data[,Y]-Y_G0) )
### output results
point <- c(total,
baseline,
prevalence,
effect,
selection)
point_specific <- c(Y_G1,
Y_G0,
psi_01,
psi_00,
mean(weight1*data[,D]),
mean(weight0*data[,D]),
mean(weight1*data[,D])-mean(weight0*data[,D]),
mean(weight1*(IPO_D1-IPO_D0)),
mean(weight0*(IPO_D1-IPO_D0)),
mean(weight1*(IPO_D1-IPO_D0)) - mean(weight0*(IPO_D1-IPO_D0)),
Y_G1-psi_01-psi_dgg(1,1,1)+psi_dgg(0,1,1),
Y_G0-psi_00-psi_dgg(1,0,0)+psi_dgg(0,0,0),
Jackson_reduction)
se_est <- c(total_se,
baseline_se,
prevalence_se,
effect_se,
selection_se)
se_est_specific <- c(se( weight1*(data[,Y]-Y_G1) ),
se( weight0*(data[,Y]-Y_G0) ),
se( weight1*(IPO_D0-psi_01)),
se( weight0*(IPO_D0-psi_00)),
se( weight1*(data[,D]-mean(weight1*data[,D])) ),
se( weight0*(data[,D]-mean(weight0*data[,D])) ),
se( weight1*(data[,D]-mean(weight1*data[,D])) - weight0*(data[,D]-mean(weight0*data[,D])) ),
se( weight1*(IPO_D1-IPO_D0-mean(weight1*(IPO_D1-IPO_D0))) ),
se( weight0*(IPO_D1-IPO_D0-mean(weight0*(IPO_D1-IPO_D0))) ),
se( weight1*(IPO_D1-IPO_D0-mean(weight1*(IPO_D1-IPO_D0))) - weight0*(IPO_D1-IPO_D0-mean(weight0*(IPO_D1-IPO_D0))) ),
se( weight1*(data[,Y]-Y_G1)-weight1*(IPO_D0-psi_01)-EIF_dgg(1,1,1)+EIF_dgg(0,1,1) ),
se( weight0*(data[,Y]-Y_G0)-weight0*(IPO_D0-psi_00)-EIF_dgg(1,0,0)+EIF_dgg(0,0,0) ),
Jackson_reduction_se)
p_value <- (1-stats::pnorm(abs(point/se_est)))*2
CI_lower <- point - stats::qnorm(1-alpha/2)*se_est
CI_upper <- point + stats::qnorm(1-alpha/2)*se_est
p_value_specific <- (1-stats::pnorm(abs(point_specific/se_est_specific)))*2
CI_lower_specific <- point_specific - stats::qnorm(1-alpha/2)*se_est_specific
CI_upper_specific <- point_specific + stats::qnorm(1-alpha/2)*se_est_specific
names <- c("total",
"baseline",
"prevalence",
"effect",
"selection")
names_specific <- c("Y_G1",
"Y_G0",
"Y0_G1",
"Y0_G0",
"D_G1",
"D_G0",
"D_G1-D_G0",
"ATE_G1",
"ATE_G0",
"ATE_G1-ATE_G0",
"Cov_G1",
"Cov_G0",
"Jackson reduction")
results <- as.data.frame(cbind(point,se_est,p_value,CI_lower,CI_upper))
results_specific <- as.data.frame(cbind(point_specific,se_est_specific,p_value_specific,CI_lower_specific,CI_upper_specific))
rownames(results) <- names
rownames(results_specific) <- names_specific
colnames(results) <- colnames(results_specific) <- c("point","se","p_value","CI_lower","CI_upper")
output <- list(results=results, results_specific=results_specific)
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.