Nothing
#' Perform conditional decomposition via parametric models
#'
#' @param Y Outcome. The name of a numeric variable (can be binary and take values of 0 and 1).
#' @param D Treatment status. The name of a binary numeric variable taking values of 0 and 1.
#' @param G Advantaged group membership. The name of a binary numeric variable taking values of 0 and 1.
#' @param Q Conditional set. A vector of variable names.
#' @param X Confounders. A vector of variable names.
#' @param data A data frame.
#' @param alpha 1-alpha confidence interval.
#' @param trim1 Threshold for trimming the propensity score. When trim1=a, individuals with propensity scores lower than a or higher than 1-a will be dropped.
#' @param trim2 Threshold for trimming the G given Q predictions. When trim2=a, individuals with G given Q predictions lower than a or higher than 1-a will be dropped.
#' @param weight Sampling weights. The name of a numeric variable. If unspecified, equal weights are used. Technically, the weight should be a deterministic function of X only (note that this is different from the unconditional decomposition).
#'
#' @return A dataframe of estimates.
#'
#' @export
#'
#' @examples
#' data(exp_data)
#'
#' results <- cdgd1_pa(
#' Y="outcome",
#' D="treatment",
#' G="group_a",
#' X="confounder",
#' Q="Q",
#' data=exp_data)
#'
#' results
cdgd1_pa <- function(Y,D,G,X,Q,data,alpha=0.05,trim1=0,trim2=0,weight=NULL) {
data <- as.data.frame(data)
if ( sum(is.na(data[,c(Y,D,G,X,Q)]))>0 ) {
stop(
"There are missing values in key variables.",
call. = FALSE
)
}
### treatment model
DgivenGXQ.Model <- stats::glm(stats::as.formula(paste(D, paste(G,paste(Q,collapse="+"),paste(X,collapse="+"),sep="+"), sep="~")), data=data, family=stats::binomial(link="logit"))
# treatment predictions
DgivenGXQ.Pred <- rep(NA, nrow(data))
DgivenGXQ.Pred <- stats::predict(DgivenGXQ.Model, newdata = data, type="response")
# trim the sample based on the propensity score
dropped <- sum(DgivenGXQ.Pred<trim1 | DgivenGXQ.Pred>1-trim1) # the number of dropped obs
data <- data[DgivenGXQ.Pred>=trim1 & DgivenGXQ.Pred<=1-trim1, ]
DgivenGXQ.Pred <- DgivenGXQ.Pred[DgivenGXQ.Pred>=trim1 & DgivenGXQ.Pred<=1-trim1]
zero_one <- sum(DgivenGXQ.Pred==0)+sum(DgivenGXQ.Pred==1)
if ( zero_one>0 ) {
stop(
paste("D given X, Q, and G are exact 0 or 1 in", zero_one, "cases.", sep=" "),
call. = FALSE
)
}
### Estimate p_g(Q)=Pr(G=g | Q)
GgivenQ.Model <- stats::glm(stats::as.formula(paste(G, paste(Q,collapse="+"), sep="~")), data=data, family=stats::binomial(link="logit"))
GgivenQ.Pred <- rep(NA, nrow(data))
GgivenQ.Pred <- stats::predict(GgivenQ.Model, newdata = data, type="response")
# trim the sample based on the G given Q predictions
dropped <- dropped + sum(GgivenQ.Pred<trim2 | GgivenQ.Pred>1-trim2) # update the number of dropped obs
data <- data[GgivenQ.Pred>=trim2 & GgivenQ.Pred<=1-trim2, ]
DgivenGXQ.Pred <- DgivenGXQ.Pred[GgivenQ.Pred>=trim2 & GgivenQ.Pred<=1-trim2]
GgivenQ.Pred <- GgivenQ.Pred[GgivenQ.Pred>=trim2 & GgivenQ.Pred<=1-trim2]
zero_one <- sum(GgivenQ.Pred==0)+sum(GgivenQ.Pred==1)
if ( zero_one>0 ) {
stop(
paste("G given Q are exact 0 or 1 in", zero_one, "cases.", sep=" "),
call. = FALSE
)
}
### outcome regression model
YgivenDGXQ.Model <- stats::lm(stats::as.formula(paste(Y, paste(paste(D,c(G,Q,X),sep="*"),collapse="+"), sep="~")), data=data)
# outcome predictions
YgivenGXQ.Pred_D0 <- YgivenGXQ.Pred_D1 <- rep(NA, nrow(data))
pred_data <- data
pred_data[,D] <- 0
YgivenGXQ.Pred_D0 <- stats::predict(YgivenDGXQ.Model, newdata = pred_data)
pred_data <- data
pred_data[,D] <- 1
YgivenGXQ.Pred_D1 <- stats::predict(YgivenDGXQ.Model, newdata = pred_data)
### Estimate E(Y_d | Q,g)
YgivenGXQ.Pred_D1 <- YgivenGXQ.Pred_D0 <- DgivenGXQ.Pred <- rep(NA, nrow(data))
pred_data <- data
pred_data[,D] <- 1
YgivenGXQ.Pred_D1 <- stats::predict(YgivenDGXQ.Model, newdata = pred_data)
pred_data <- data
pred_data[,D] <- 0
YgivenGXQ.Pred_D0 <- stats::predict(YgivenDGXQ.Model, newdata = pred_data)
DgivenGXQ.Pred <- stats::predict(DgivenGXQ.Model, newdata = pred_data, type="response")
zero_one <- sum(DgivenGXQ.Pred==0)+sum(DgivenGXQ.Pred==1)
if ( zero_one>0 ) {
stop(
paste("D given X, Q, and G are exact 0 or 1 in", zero_one, "cases.", sep=" "),
call. = FALSE
)
}
### The "IPO" (individual potential outcome) function
# For each d and g value, we have IE(d,g)=\frac{\one(D=d)}{\pi(d,X,g)}[Y-\mu(d,X,g)]+\mu(d,X,g)
# We stabilize the weight by dividing the sample average of estimated weights
IPO_D0 <- (1-data[,D])/(1-DgivenGXQ.Pred)/mean((1-data[,D])/(1-DgivenGXQ.Pred))*(data[,Y]-YgivenGXQ.Pred_D0) + YgivenGXQ.Pred_D0
IPO_D1 <- data[,D]/DgivenGXQ.Pred/mean(data[,D]/DgivenGXQ.Pred)*(data[,Y]-YgivenGXQ.Pred_D1) + YgivenGXQ.Pred_D1
if (is.null(weight)) {
weight <- rep(1, nrow(data))
tr.weight <- rep(1, nrow(data))
} else {
weight <- data[,weight]
tr.weight <- weight/stats::predict(stats::lm(stats::as.formula(paste("weight", paste(paste("data[,G]","data[,Q]",sep="*"),collapse="+"), sep="~"))))
}
# tr.weight (transformed weight) is the original weight divided by E(weight|G,Q)
data_temp <- data[,c(G,Q)]
data_temp$IPO_D0 <- IPO_D0*tr.weight
data_temp$IPO_D1 <- IPO_D1*tr.weight
data_temp[,D] <- data[,D]*tr.weight
Y0givenGQ.Model <- stats::lm(stats::as.formula(paste("IPO_D0", paste(paste(G,Q,sep="*"),collapse="+"), sep="~")), data=data_temp)
Y1givenGQ.Model <- stats::lm(stats::as.formula(paste("IPO_D1", paste(paste(G,Q,sep="*"),collapse="+"), sep="~")), data=data_temp)
Y0givenQ.Pred_G0 <- Y0givenQ.Pred_G1 <- Y1givenQ.Pred_G0 <- Y1givenQ.Pred_G1 <- rep(NA, nrow(data))
pred_data <- data
pred_data[,G] <- 1
Y0givenQ.Pred_G1 <- stats::predict(Y0givenGQ.Model, newdata = pred_data)
Y1givenQ.Pred_G1 <- stats::predict(Y1givenGQ.Model, newdata = pred_data)
pred_data <- data
pred_data[,G] <- 0
Y0givenQ.Pred_G0 <- stats::predict(Y0givenGQ.Model, newdata = pred_data)
Y1givenQ.Pred_G0 <- stats::predict(Y1givenGQ.Model, newdata = pred_data)
### Estimate E(D | Q,g')
if (all(weight == 1)) {
DgivenGQ.Model <- stats::glm(stats::as.formula(paste(D, paste(paste(G,Q,sep="*"),collapse="+"), sep="~")), data=data_temp, family=stats::binomial(link="logit"))
DgivenQ.Pred_G0 <- DgivenQ.Pred_G1 <- rep(NA, nrow(data))
pred_data <- data
pred_data[,G] <- 0
DgivenQ.Pred_G0 <- stats::predict(DgivenGQ.Model, newdata = pred_data, type="response")
pred_data <- data
pred_data[,G] <- 1
DgivenQ.Pred_G1 <- stats::predict(DgivenGQ.Model, newdata = pred_data, type="response")
} else {
DgivenGQ.Model <- stats::lm(stats::as.formula(paste(D, paste(paste(G,Q,sep="*"),collapse="+"), sep="~")), data=data_temp)
DgivenQ.Pred_G0 <- DgivenQ.Pred_G1 <- rep(NA, nrow(data))
pred_data <- data
pred_data[,G] <- 0
DgivenQ.Pred_G0 <- stats::predict(DgivenGQ.Model, newdata = pred_data)
pred_data <- data
pred_data[,G] <- 1
DgivenQ.Pred_G1 <- stats::predict(DgivenGQ.Model, newdata = pred_data)
}
### The one-step estimate of \xi_{dg}
weight0 <- (1-data[,G])/(1-mean(data[,G]))*weight/mean((1-data[,G])/(1-mean(data[,G]))*weight)
weight1 <- data[,G]/mean(data[,G])*weight/mean(data[,G]/mean(data[,G])*weight)
psi_00 <- mean( weight0*IPO_D0 )
psi_01 <- mean( weight1*IPO_D0 )
### The one-step estimate of \xi_{dgg'g''}
# There are 8 possible dgg'g'' combinations, so we define a function first
psi_dggg <- function(d,g1,g2,g3) {
if (d==0 & g1==0) {
IPO_arg <- IPO_D0
YdgivenQ.Pred_arg <- Y0givenQ.Pred_G0
g1givenQ.Pred_arg <- 1-GgivenQ.Pred}
if (d==1 & g1==0) {
IPO_arg <- IPO_D1
YdgivenQ.Pred_arg <- Y1givenQ.Pred_G0
g1givenQ.Pred_arg <- 1-GgivenQ.Pred}
if (d==0 & g1==1) {
IPO_arg <- IPO_D0
YdgivenQ.Pred_arg <- Y0givenQ.Pred_G1
g1givenQ.Pred_arg <- GgivenQ.Pred}
if (d==1 & g1==1) {
IPO_arg <- IPO_D1
YdgivenQ.Pred_arg <- Y1givenQ.Pred_G1
g1givenQ.Pred_arg <- GgivenQ.Pred}
if (g2==0) {
DgivenQ.Pred_arg <- DgivenQ.Pred_G0
g2givenQ.Pred_arg <- 1-GgivenQ.Pred
}
if (g2==1) {
DgivenQ.Pred_arg <- DgivenQ.Pred_G1
g2givenQ.Pred_arg <- GgivenQ.Pred
}
if (g3==0) {
g3givenQ.Pred_arg <- 1-GgivenQ.Pred
}
if (g3==1) {
g3givenQ.Pred_arg <- GgivenQ.Pred
}
# denominators for weight stabilization using the fact that E( \frac{\one(G=g)p_{g''}(Q)}{p_g(Q)p_{g''}} ) and E( \frac{\one(G=g')p_{g''}(Q)}{p_{g'}(Q)p_{g''}} ) are both 1.
stab1 <- mean(as.numeric(data[,G]==g1)/mean(data[,G]==g3)*g3givenQ.Pred_arg/g1givenQ.Pred_arg)
stab2 <- mean(as.numeric(data[,G]==g2)/mean(data[,G]==g3)*g3givenQ.Pred_arg/g2givenQ.Pred_arg)
weight_g3 <- weight/mean(as.numeric(data[,G]==g3)/mean(data[,G]==g3)*weight)
psi_dggg <- mean( weight_g3*as.numeric(data[,G]==g3)/mean(data[,G]==g3)*YdgivenQ.Pred_arg*DgivenQ.Pred_arg +
weight_g3*tr.weight*as.numeric(data[,G]==g1)/mean(data[,G]==g3)*g3givenQ.Pred_arg/g1givenQ.Pred_arg/stab1*(IPO_arg-YdgivenQ.Pred_arg)*DgivenQ.Pred_arg +
weight_g3*tr.weight*as.numeric(data[,G]==g2)/mean(data[,G]==g3)*g3givenQ.Pred_arg/g2givenQ.Pred_arg/stab2*(data[,D]-DgivenQ.Pred_arg)*YdgivenQ.Pred_arg )
return(psi_dggg)
}
### point estimates
Y_G0 <- mean(weight0*data[,Y]) # mean outcome estimate for group 0
Y_G1 <- mean(weight1*data[,Y]) # mean outcome estimate for group 1
total <- Y_G1-Y_G0
baseline <- psi_01-psi_00
cond_prevalence <- psi_dggg(1,0,1,0)-psi_dggg(0,0,1,0)-psi_dggg(1,0,0,0)+psi_dggg(0,0,0,0)
cond_effect <- psi_dggg(1,1,1,1)-psi_dggg(0,1,1,1)-psi_dggg(1,0,1,1)+psi_dggg(0,0,1,1)
Q_dist <- psi_dggg(1,0,1,1)-psi_dggg(0,0,1,1)-psi_dggg(1,0,1,0)+psi_dggg(0,0,1,0)
cond_selection <- total-baseline-cond_prevalence-cond_effect-Q_dist
cond_Jackson_reduction <- psi_00+psi_dggg(1,0,1,0)-psi_dggg(0,0,1,0)-Y_G0
### standard error estimates
se <- function(x) {sqrt( mean(x^2)/nrow(data) )}
total_se <- se( weight1*(data[,Y]-Y_G1) - weight0*(data[,Y]-Y_G0) )
baseline_se <- se( weight1*(IPO_D0-psi_01) - weight0*(IPO_D0-psi_00) )
EIF_dggg <- function(d,g1,g2,g3) {
if (d==0 & g1==0) {
IPO_arg <- IPO_D0
YdgivenQ.Pred_arg <- Y0givenQ.Pred_G0
g1givenQ.Pred_arg <- 1-GgivenQ.Pred}
if (d==1 & g1==0) {
IPO_arg <- IPO_D1
YdgivenQ.Pred_arg <- Y1givenQ.Pred_G0
g1givenQ.Pred_arg <- 1-GgivenQ.Pred}
if (d==0 & g1==1) {
IPO_arg <- IPO_D0
YdgivenQ.Pred_arg <- Y0givenQ.Pred_G1
g1givenQ.Pred_arg <- GgivenQ.Pred}
if (d==1 & g1==1) {
IPO_arg <- IPO_D1
YdgivenQ.Pred_arg <- Y1givenQ.Pred_G1
g1givenQ.Pred_arg <- GgivenQ.Pred}
if (g2==0) {
DgivenQ.Pred_arg <- DgivenQ.Pred_G0
g2givenQ.Pred_arg <- 1-GgivenQ.Pred
}
if (g2==1) {
DgivenQ.Pred_arg <- DgivenQ.Pred_G1
g2givenQ.Pred_arg <- GgivenQ.Pred
}
if (g3==0) {
g3givenQ.Pred_arg <- 1-GgivenQ.Pred
}
if (g3==1) {
g3givenQ.Pred_arg <- GgivenQ.Pred
}
# denominators for weight stabilization using the fact that E( \frac{\one(G=g)p_{g''}(Q)}{p_g(Q)p_{g''}} ) and E( \frac{\one(G=g')p_{g''}(Q)}{p_{g'}(Q)p_{g''}} ) are both 1.
stab1 <- mean(as.numeric(data[,G]==g1)/mean(data[,G]==g3)*g3givenQ.Pred_arg/g1givenQ.Pred_arg)
stab2 <- mean(as.numeric(data[,G]==g2)/mean(data[,G]==g3)*g3givenQ.Pred_arg/g2givenQ.Pred_arg)
weight_g3 <- weight/mean(as.numeric(data[,G]==g3)/mean(data[,G]==g3)*weight)
return(
weight_g3*as.numeric(data[,G]==g3)/mean(data[,G]==g3)*(YdgivenQ.Pred_arg*DgivenQ.Pred_arg-psi_dggg(d,g1,g2,g3)) +
weight_g3*tr.weight*as.numeric(data[,G]==g1)/mean(data[,G]==g3)*g3givenQ.Pred_arg/g1givenQ.Pred_arg/stab1*(IPO_arg-YdgivenQ.Pred_arg)*DgivenQ.Pred_arg +
weight_g3*tr.weight*as.numeric(data[,G]==g2)/mean(data[,G]==g3)*g3givenQ.Pred_arg/g2givenQ.Pred_arg/stab2*(data[,D]-DgivenQ.Pred_arg)*YdgivenQ.Pred_arg
)
}
cond_prevalence_se <- se( EIF_dggg(1,0,1,0)-EIF_dggg(0,0,1,0)-EIF_dggg(1,0,0,0)+EIF_dggg(0,0,0,0) )
cond_effect_se <- se( EIF_dggg(1,1,1,1)-EIF_dggg(0,1,1,1)-EIF_dggg(1,0,1,1)+EIF_dggg(0,0,1,1) )
Q_dist_se <- se( EIF_dggg(1,0,1,1)-EIF_dggg(0,0,1,1)-EIF_dggg(1,0,1,0)+EIF_dggg(0,0,1,0) )
cond_selection_se <- se( weight1*(data[,Y]-Y_G1) - weight0*(data[,Y]-Y_G0) -
( weight1*(IPO_D0-psi_01) - weight0*(IPO_D0-psi_00) ) -
( EIF_dggg(1,0,1,0)-EIF_dggg(0,0,1,0)-EIF_dggg(1,0,0,0)+EIF_dggg(0,0,0,0) ) -
( EIF_dggg(1,1,1,1)-EIF_dggg(0,1,1,1)-EIF_dggg(1,0,1,1)+EIF_dggg(0,0,1,1) ) -
( EIF_dggg(1,0,1,1)-EIF_dggg(0,0,1,1)-EIF_dggg(1,0,1,0)+EIF_dggg(0,0,1,0) ))
cond_Jackson_reduction_se <- se( weight0*(IPO_D0-psi_00)+EIF_dggg(1,0,1,0)-EIF_dggg(0,0,1,0)-weight0*(data[,Y]-Y_G0) )
### output results
point <- c(total,
baseline,
cond_prevalence,
cond_effect,
cond_selection,
Q_dist,
cond_Jackson_reduction)
se <- c(total_se,
baseline_se,
cond_prevalence_se,
cond_effect_se,
cond_selection_se,
Q_dist_se,
cond_Jackson_reduction_se)
p_value <- (1-stats::pnorm(abs(point/se)))*2
CI_lower <- point - stats::qnorm(1-alpha/2)*se
CI_upper <- point + stats::qnorm(1-alpha/2)*se
names <- c("total",
"baseline",
"conditional prevalence",
"conditional effect",
"conditional selection",
"Q distribution",
"conditional Jackson reduction")
output <- as.data.frame(cbind(point,se,p_value,CI_lower,CI_upper))
rownames(output) <- names
if (trim1==0 & trim2==0) {
output <- output
} else {
output <- list(results=output, dropped=dropped)
}
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.