Nothing
single.meanvar.poisson.calc <-
function(data,extrainf=TRUE,minseglen){
singledim=function(data,extrainf=TRUE,minseglen){
n=length(data)
y=c(0,cumsum(data))
if(y[n+1]==0){
null=Inf
}
else{
null=2*y[n+1]*log(n) - 2*y[n+1]*log(y[n+1])
}
taustar=minseglen:(n-minseglen)
tmp=2*log(taustar)*y[taustar+1] -2*y[taustar+1]*log(y[taustar+1]) + 2*log(n-taustar)*(y[n+1]-y[taustar+1])-2*(y[n+1]-y[taustar+1])*log((y[n+1]-y[taustar+1]))
if(sum(is.na(tmp))!=0){
tmp[which(is.na(tmp))]=Inf
}
tau=which(tmp==min(tmp,na.rm=T))[1]
taulike=tmp[tau]
tau=tau+minseglen-1 # correcting for the fact that we are starting at minseglen
if(extrainf==TRUE){
out=c(tau,null,taulike)
names(out)=c('cpt','null','alt')
return(out)
}
else{
return(tau)
}
}
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single data set
cpt=singledim(data,extrainf,minseglen)
return(cpt)
}
else{
rep=nrow(data)
n=ncol(data)
cpt=NULL
if(extrainf==FALSE){
for(i in 1:rep){
cpt[i]=singledim(data[i,],extrainf,minseglen)
}
}
else{
cpt=matrix(0,ncol=3,nrow=rep)
for(i in 1:rep){
cpt[i,]=singledim(data[i,],extrainf,minseglen)
}
colnames(cpt)=c('cpt','null','alt')
}
return(cpt)
}
}
single.meanvar.poisson<-function(data,penalty="MBIC",pen.value=0,class=TRUE,param.estimates=TRUE,minseglen){
if((sum(data<0)>0)){stop('Poisson test statistic requires positive data')}
if(sum(as.integer(data)==data)!=length(data)){stop('Poisson test statistic requires integer data')}
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single dataset
n=length(data)
}
else{
n=ncol(data)
}
if(n<4){stop('Data must have atleast 4 observations to fit a changepoint model.')}
if(n<(2*minseglen)){stop('Minimum segment legnth is too large to include a change in this data')}
pen.value = penalty_decision(penalty, pen.value, n, diffparam=1, asymcheck="meanvar.poisson", method="AMOC")
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
tmp=single.meanvar.poisson.calc(coredata(data),extrainf=TRUE,minseglen)
if(penalty=="MBIC"){
tmp[3]=tmp[3]+log(tmp[1])+log(n-tmp[1]+1)
}
ans=decision(tmp[1],tmp[2],tmp[3],penalty,n,diffparam=1,pen.value)
if(class==TRUE){
return(class_input(data, cpttype="mean and variance", method="AMOC", test.stat="Poisson", penalty=penalty, pen.value=ans$pen, minseglen=minseglen, param.estimates=param.estimates, out=c(0,ans$cpt)))
}
else{ return(ans$cpt)}
}
else{
tmp=single.meanvar.poisson.calc(data,extrainf=TRUE,minseglen)
if(penalty=="MBIC"){
tmp[,3]=tmp[,3]+log(tmp[,1])+log(n-tmp[,1]+1)
}
ans=decision(tmp[,1],tmp[,2],tmp[,3],penalty,n,diffparam=1,pen.value)
if(class==TRUE){
rep=nrow(data)
out=list()
for(i in 1:rep){
out[[i]]=class_input(data[i,], cpttype="mean and variance", method="AMOC", test.stat="Poisson", penalty=penalty, pen.value=ans$pen, minseglen=minseglen, param.estimates=param.estimates, out=c(0,ans$cpt[i]))
}
return(out)
}
else{ return(ans$cpt)}
}
}
segneigh.meanvar.poisson=function(data,Q=5,pen=0){
if((sum(data<0)>0)){stop('Poisson test statistic requires positive data')}
if(sum(as.integer(data)==data)!=length(data)){stop('Poisson test statistic requires integer data')}
n=length(data)
if(n<4){stop('Data must have atleast 4 observations to fit a changepoint model.')}
if(Q>((n/2)+1)){stop(paste('Q is larger than the maximum number of segments',(n/2)+1))}
all.seg=matrix(0,ncol=n,nrow=n)
for(i in 1:n){
sumx=0
for(j in i:n){
len=j-i+1
sumx=sumx+data[j]
if(sumx==0){
all.seg[i,j]=-Inf
}
else{
all.seg[i,j]=sumx*log(sumx)-sumx*log(len)
}
}
}
like.Q=matrix(0,ncol=n,nrow=Q)
like.Q[1,]=all.seg[1,]
cp=matrix(NA,ncol=n,nrow=Q)
for(q in 2:Q){
for(j in q:n){
like=NULL
if((j-2-q)<0){v=q}
else{v=(q):(j-2)}
like=like.Q[q-1,v]+all.seg[v+1,j]
like.Q[q,j]= max(like,na.rm=TRUE)
cp[q,j]=which(like==max(like,na.rm=TRUE))[1]+(q-1)
}
}
cps.Q=matrix(NA,ncol=Q,nrow=Q)
for(q in 2:Q){
cps.Q[q,1]=cp[q,n]
for(i in 1:(q-1)){
cps.Q[q,(i+1)]=cp[(q-i),cps.Q[q,i]]
}
}
k=0:(Q-1)
criterion=-2*like.Q[,n]+k*pen
op.cps=which(criterion==min(criterion,na.rm=T))[1]-1
if(op.cps==(Q-1)){warning('The number of segments identified is Q, it is advised to increase Q to make sure changepoints have not been missed.')}
if(op.cps==0){cpts=n}
else{cpts=c(sort(cps.Q[op.cps+1,][cps.Q[op.cps+1,]>0]),n)}
return(list(cps=t(apply(cps.Q,1,sort,na.last=TRUE)),cpts=cpts,op.cpts=op.cps,pen=pen,like=criterion[op.cps+1],like.Q=like.Q[,n]))
}
multiple.meanvar.poisson=function(data,mul.method="PELT",penalty="MBIC",pen.value=0,Q=5,class=TRUE,param.estimates=TRUE,minseglen){
if((sum(data<0)>0)){stop('Poisson test statistic requires positive data')}
if(sum(as.integer(data)==data)!=length(data)){stop('Poisson test statistic requires integer data')}
if(!((mul.method=="PELT")||(mul.method=="BinSeg")||(mul.method=="SegNeigh"))){
stop("Multiple Method is not recognised")
}
costfunc = "meanvar.poisson"
if(penalty=="MBIC"){
if(mul.method=="SegNeigh"){
stop('MBIC penalty not implemented for SegNeigh method, please choose an alternative penalty')
}
costfunc = "meanvar.poisson.mbic"
}
diffparam=1
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single dataset
n=length(data)
}
else{
n=ncol(data)
}
if(n<(2*minseglen)){stop('Minimum segment legnth is too large to include a change in this data')}
pen.value = penalty_decision(penalty, pen.value, n, diffparam=1, asymcheck=costfunc, method=mul.method)
if(is.null(dim(data))==TRUE || length(dim(data)) == 1){
# single dataset
out = data_input(data=data,method=mul.method,pen.value=pen.value,costfunc=costfunc,minseglen=minseglen,Q=Q)
if(class==TRUE){
return(class_input(data, cpttype="mean and variance", method=mul.method, test.stat="Poisson", penalty=penalty, pen.value=pen.value, minseglen=minseglen, param.estimates=param.estimates, out=out, Q=Q))
}
else{ return(out[[2]])}
}
else{
rep=nrow(data)
out=list()
for(i in 1:rep){
out[[i]]=data_input(data[i,],method=mul.method,pen.value=pen.value,costfunc=costfunc,minseglen=minseglen,Q=Q)
}
cpts=lapply(out, '[[', 2)
if(class==TRUE){
ans=list()
for(i in 1:rep){
ans[[i]]=class_input(data[i,], cpttype="mean and variance", method=mul.method, test.stat="Poisson", penalty=penalty, pen.value=pen.value, minseglen=minseglen, param.estimates=param.estimates, out=out[[i]], Q=Q)
}
return(ans)
}
else{return(cpts)}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.