Nothing
knnEval <-
function(X,grp,train,kfold=10,knnvec=seq(2,20,by=2),
plotit=TRUE,legend=TRUE,legpos="bottomright",...){
#
# EVALUATION for k-Nearest-Neighbors (kNN) by cross-validation
#
# subroutine for misclassification rates
evalSEfac <- function(pred,grptrain,spltr,grplev){
kfold=max(spltr)
k=length(grplev)
misscli=rep(NA,k)
for (i in 1:kfold){
tab=table(grptrain[spltr==i],pred[spltr==i])
misscli[i]=1-sum(diag(tab))/sum(tab)
}
list(mean=mean(misscli),se=sd(misscli)/sqrt(kfold),all=misscli)
}
#require(class)
# main routine
ntrain=length(train)
lknnvec=length(knnvec)
trainerr=rep(NA,lknnvec)
testerr=rep(NA,lknnvec)
cvMean=rep(NA,lknnvec)
cvSe=rep(NA,lknnvec)
cverr=matrix(NA,nrow=kfold,ncol=lknnvec)
# require(class)
for (j in 1:lknnvec){
pred=knn(X[train,],X[-train,],factor(grp[train]),k=knnvec[j])
tab=table(grp[-train],pred)
testerr[j] <- 1-sum(diag(tab))/sum(tab) # test error
pred=knn(X[train,],X[train,],factor(grp[train]),k=knnvec[j])
tab=table(grp[train],pred)
trainerr[j] <- 1-sum(diag(tab))/sum(tab) # training error
splt <- rep(1:kfold,length=ntrain)
spltr <- sample(splt,ntrain)
pred <- factor(rep(NA,ntrain),levels=levels(grp))
for (i in 1:kfold){
pred[spltr==i]=knn(X[train[spltr!=i],],X[train[spltr==i],],
factor(grp[train[spltr!=i]]),k=knnvec[j])
}
resi=evalSEfac(pred,grp[train],spltr,levels(grp))
cverr[,j] <- resi$all
cvMean[j] <- resi$mean
cvSe[j] <- resi$se
}
if (plotit){
ymax=max(trainerr,testerr,cvMean+cvSe)
vknnvec=seq(1,lknnvec)
plot(vknnvec,trainerr,ylim=c(0,ymax),xlab="Number of nearest neighbors",
ylab="Missclassification error",cex.lab=1.2,type="l",lty=2,xaxt="n",...)
axis(1,at=vknnvec,labels=knnvec)
points(vknnvec,trainerr,pch=4)
lines(vknnvec,testerr,lty=1,lwd=1.3)
points(vknnvec,testerr,pch=1)
lines(vknnvec,cvMean,lty=1)
points(vknnvec,cvMean,pch=16)
for (i in 1:lknnvec){
segments(vknnvec[i],cvMean[i]-cvSe[i],vknnvec[i],cvMean[i]+cvSe[i])
segments(vknnvec[i]-0.2,cvMean[i]-cvSe[i],vknnvec[i]+0.2,cvMean[i]-cvSe[i])
segments(vknnvec[i]-0.2,cvMean[i]+cvSe[i],vknnvec[i]+0.2,cvMean[i]+cvSe[i])
}
abline(h=min(cvMean)+cvSe[which.min(cvMean)],lty=3,lwd=1.2)
if (legend){
legend(legpos,c("Test error","CV error","Training error"),
lty=c(1,1,2),lwd=c(1.3,1,1),pch=c(1,16,4))
}
}
list(trainerr=trainerr,testerr=testerr,cvMean=cvMean,cvSe=cvSe,
cverr=cverr,knnvec=knnvec)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.