Nothing
treeEval <-
function(X,grp,train,kfold=10,cp=seq(0.01,0.1,by=0.01),
plotit=TRUE,legend=TRUE,legpos="bottomright",...){
#
# EVALUATION for Classification trees by cross-validation
#
# subroutine for misclassification rates
evalSE <- function(pred,grptrain,spltr,grplev){
kfold=max(spltr)
k=length(grplev)
misscli=rep(NA,k)
for (i in 1:kfold){
tab=table(grptrain[spltr==i],pred[spltr==i])
misscli[i]=mkTable(pred[spltr==i],tab,grplev)$miscl
}
list(mean=mean(misscli),se=sd(misscli)/sqrt(kfold),all=misscli)
}
#require(rpart)
mkTable <- function(pred,tab,grplev){
predf=factor(pred,labels=grplev[sort(unique(pred))])
tabf=matrix(0,ncol=length(grplev),nrow=length(grplev))
dimnames(tabf)=list(grplev,grplev)
tabf[,levels(predf)] <- tab
miscl <- 1-sum(diag(tabf))/sum(tabf)
list(miscl=miscl,tab=tabf)
}
# main routine
dat=data.frame(grp,X)
ntrain=length(train)
lvary=length(cp)
trainerr=rep(NA,lvary)
testerr=rep(NA,lvary)
cvMean=rep(NA,lvary)
cvSe=rep(NA,lvary)
cverr=matrix(NA,nrow=kfold,ncol=lvary)
for (j in 1:lvary){
restree=rpart(grp~.,data=dat[train,],method="class",
control=rpart.control(cp=.00001))
tree2=prune(restree,cp=cp[j])
respred=predict(tree2,newdata=dat[-train,])
pred=apply(respred,1,which.max)
tab=table(grp[-train],pred)
testerr[j] <- mkTable(pred,tab,levels(grp))$miscl # test error
respred=predict(tree2,newdata=dat[train,])
pred=apply(respred,1,which.max)
tab=table(grp[train],pred)
trainerr[j] <- mkTable(pred,tab,levels(grp))$miscl # training error
splt <- rep(1:kfold,length=ntrain)
spltr <- sample(splt,ntrain)
pred <- rep(NA,ntrain)
for (i in 1:kfold){
restree=rpart(grp~.,data=dat[train[spltr!=i],],method="class",
control=rpart.control(cp=.00001))
tree2=prune(restree,cp=cp[j])
respred=predict(tree2,newdata=dat[train[spltr==i],])
pred[spltr==i]=apply(respred,1,which.max)
}
resi=evalSE(pred,grp[train],spltr,levels(grp))
cverr[,j] <- resi$all
cvMean[j] <- resi$mean
cvSe[j] <- resi$se
}
if (plotit){
ymax=max(trainerr,testerr,cvMean+cvSe)
vvec=seq(1,lvary)
plot(vvec,trainerr,ylim=c(0,ymax),xlab="Tree complexity parameter",
ylab="Missclassification error",cex.lab=1.2,type="l",lty=2,xaxt="n",...)
axis(1,at=vvec,labels=cp)
points(vvec,trainerr,pch=4)
lines(vvec,testerr,lty=1,lwd=1.3)
points(vvec,testerr,pch=1)
lines(vvec,cvMean,lty=1)
points(vvec,cvMean,pch=16)
for (i in 1:lvary){
segments(vvec[i],cvMean[i]-cvSe[i],vvec[i],cvMean[i]+cvSe[i])
segments(vvec[i]-0.2,cvMean[i]-cvSe[i],vvec[i]+0.2,cvMean[i]-cvSe[i])
segments(vvec[i]-0.2,cvMean[i]+cvSe[i],vvec[i]+0.2,cvMean[i]+cvSe[i])
}
abline(h=min(cvMean)+cvSe[which.min(cvMean)],lty=3,lwd=1.2)
if (legend){
legend(legpos,c("Test error","CV error","Training error"),
lty=c(1,1,2),lwd=c(1.3,1,1),pch=c(1,16,4))
}
}
list(trainerr=trainerr,testerr=testerr,cvMean=cvMean,cvSe=cvSe,
cverr=cverr,cp=cp)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.