tests/daisy-ex.R

## For different cluster versions

require(cluster)

if(interactive()) print(packageDescription("cluster"))

## trivial cases should 'work':
daisy(cbind(1))
(d10 <- daisy(matrix(0., 1,0))); str(d10)
d01 <- daisy(matrix(0., 0,1))
if(paste(R.version$major, R.version$minor, sep=".") >= "2.1.0")
    print(d01)
str(d01)
d32 <- data.frame(eins=c("A"=1,"B"=1,"C"=1), zwei=c(2,2,2))
daisy(d32)
daisy(d32, stand = TRUE)
daisy(d32, type = list(ordratio="zwei"))


str(d5 <- data.frame(a= c(0, 0, 0,1,0,0, 0,0,1, 0,NA),
                     b= c(NA,0, 1,1,0,1, 0,1,0, 1,0),
                     c= c(0, 1, 1,0,1,NA,1,0,1, 0,NA),
                     d= c(1, 1, 0,1,0,0, 0,0,0, 1,0),
                     e= c(1, NA,0,1,0,0, 0,0,NA,1,1)))
(d0 <- daisy(d5))
(d1 <- daisy(d5, type = list(asymm = 1:5)))
(d2 <- daisy(d5, type = list(symm = 1:2, asymm= 3:5)))
(d2.<- daisy(d5, type = list(     asymm= 3:5)))
stopifnot(identical(c(d2), c(d2.)))
(dS <- daisy(d5, stand = TRUE))# gave error in some versions
stopifnot(all.equal(as.vector(summary(c(dS), digits=9)),
                    c(0, 2.6142638, 3.4938562, 3.2933687, 4.0591077, 5.5580177),
                    tol = 1e-7))# 7.88e-9

d5[,4] <- 1 # binary with only one instead of two values
(d0 <- daisy(d5))
(d1 <- daisy(d5, type = list(asymm = 1:5)))# 2 NAs
(d2 <- daisy(d5, type = list(symm = 1:2, asymm= 3:5)))
(d2.<- daisy(d5, type = list(     asymm= 3:5)))
## better leave away the constant variable: it has no effect:
stopifnot(identical(c(d1), c(daisy(d5[,-4], type = list(asymm = 1:4)))))

###---- Trivial "binary only" matrices (not data frames) did fail:

x <- matrix(0, 2, 2)
dimnames(x)[[2]] <- c("A", "B")## colnames<- is missing in S+
daisy(x, type = list(symm= "B", asymm="A"))
daisy(x, type = list(symm= "B"))# 0 too

x2 <- x; x2[2,2] <- 1
daisy(x2, type= list(symm = "B"))# |-> 0.5  (gives 1 in S+)
daisy(x2, type= list(symm = "B", asymm="A"))# 1

x3 <- x; x3[] <- diag(2)
daisy(x3) # warning: both as interval scaled -> sqrt(2)
daisy(x3, type= list(symm="B", asymm="A"))#  1
daisy(x3, type= list(symm =c("B","A")))   #  1, S+: sqrt(2)
daisy(x3, type= list(asymm=c("B","A")))   #  1, S+ : sqrt(2)

x4 <- rbind(x3, 1)
daisy(x4, type= list(symm="B", asymm="A"))# 1   0.5 0.5
daisy(x4, type= list(symm=c("B","A")))    # dito;  S+ : 1.41  1   1
daisy(x4, type= list(asymm=c("A","B")))   # dito,     dito



## ----------- example(daisy) -----------------------

data(flower)
data(agriculture)

## Example 1 in ref:
##  Dissimilarities using Euclidean metric and without standardization
(d.agr  <- daisy(agriculture, metric = "euclidean", stand = FALSE))
(d.agr2 <- daisy(agriculture, metric = "manhattan"))


## Example 2 in ref
(dfl0 <- daisy(flower))
stopifnot(identical(c(dfl0),
                    c(daisy(flower, type = list(symm = 1)))) &&
          identical(c(dfl0),
                    c(daisy(flower, type = list(symm = 2)))) &&
          identical(c(dfl0),
                    c(daisy(flower, type = list(symm = 3)))) &&
          identical(c(dfl0),
                    c(daisy(flower, type = list(symm = c(1,3)))))
         )

(dfl1 <- daisy(flower, type = list(asymm = 3)))
(dfl2 <- daisy(flower, type = list(asymm = c(1, 3), ordratio = 7)))
(dfl3 <- daisy(flower, type = list(asymm = 1:3)))

## --- animals
data(animals)
d0 <- daisy(animals)

d1 <- daisy(animals - 1, type=list(asymm=c(2,4)))
(d2 <- daisy(animals - 1, type=list(symm = c(1,3,5,6), asymm=c(2,4))))
stopifnot(c(d1) == c(d2))

d3 <- daisy(2 - animals, type=list(asymm=c(2,4)))
(d4 <- daisy(2 - animals, type=list(symm = c(1,3,5,6), asymm=c(2,4))))
stopifnot(c(d3) == c(d4))

pairs(cbind(d0,d2,d4),
      main = "Animals -- symmetric and asymm. dissimilarities")

Try the cluster package in your browser

Any scripts or data that you put into this service are public.

cluster documentation built on April 3, 2025, 10:33 p.m.