R/boot_cluspca.R In clustrd: Methods for Joint Dimension Reduction and Clustering

```#Global stability of cluspca() as in Dolnicar & Leisch (2010)
#TODOs: check if it makes sense
# add parallelization as in flexclust()
boot_cluspca <- function(data, krange, nd = NULL, method = "RKM", alpha=NULL,scale = TRUE, center= TRUE,nstart=100, nboot=10,  seed=NULL, ...)
{
clu={}
#x = scale(data, center = center, scale = scale)
x = data.frame(data)

if(!is.null(seed)) set.seed(seed)
seed <- round(2^31 * runif(nboot, -1, 1))

nk <- length(krange)
nx <- nrow(x)

index1 <- matrix(integer(1), nrow=nx, ncol=nboot)
index2 <- index1
## empirical experiments show parallization does not pay for this
## (sample is too fast)
for(b in 1:nboot){
index1[,b] <- sample(1:nx, nx, replace=TRUE)
index2[,b] <- sample(1:nx, nx, replace=TRUE)
}

BFUN <- function(b){
set.seed(seed[b])
cat('\n')
print(paste0("nboot = ", b))
clust1 <- clust2 <- matrix(integer(1), nrow=nx, ncol=nk)
rand <- double(nk)
conc <- double(nk)
for(l in 1:nk)
{
if(nk>1){
if (!is.null(nd)) {
if ((length(nd) >1) & (l==1))  {
cat('\n')
print('Warning: the number of dimensions (nd) must be a single number. Automatically set to the first value in the range.')
}
ndim = nd[1]
}
else
ndim = krange[l]-1
cat('\n')
print(paste0("Running for ",krange[l]," clusters and ",ndim[1]," dimensions."))
cl1 <- cluspca(x[index1[,b],,drop=FALSE],nclus=krange[l],ndim=ndim,method = method, nstart=nstart, alpha = alpha,scale = scale, center = center, seed = seed)
cl2 <- cluspca(x[index2[,b],,drop=FALSE],nclus=krange[l],ndim=ndim,method = method,nstart=nstart, alpha = alpha, scale = scale, center = center, seed = seed)
} else{
if (!is.null(nd)) {
if ((length(nd) >1) & (l==1))  {
cat('\n')
print('Warning: the number of dimensions (nd) must be a single number. Automatically set to the first value in the range.')
}
ndim = nd[1]
}
else
ndim = krange-1
cat('\n')
print(paste0("Running for ",krange," clusters and ",ndim[1]," dimensions."))
cl1 <- cluspca(x[index1[,b],,drop=FALSE],nclus=krange,ndim=ndim,method = method,nstart=nstart, alpha = alpha, scale = scale, center = center, seed = seed)
cl2 <- cluspca(x[index2[,b],,drop=FALSE],nclus=krange,ndim=ndim,method = method,nstart=nstart, alpha = alpha,scale = scale, center = center, seed = seed)
}
# clall <- cluspca(x,nclus=krange[l],ndim=ndim, method = method, nstart=nstart, alpha = alpha, scale = scale, center = center, seed = seed)

x1 = x[index1[,b],,drop=FALSE]
gm=apply(x1,2,mean)
x1\$clu = cl1\$cluster
clum=(x1 %>% group_by(clu) %>% summarise_all(list(mean)))

am = rbind(clum[,-1],gm)
bm = data.frame(am)
#rownames(bm) = c(paste("C",1:nrow(clum),sep=""),"all")

cl1\$centers = as.matrix(bm[1:krange[l],])
x1 = x1[,-ncol(x1)]

#cl1\$centroid
closest.cluster1 <- function(x) {
cluster.dist <- apply(cl1\$centers, 1, function(y) sqrt(sum((x-y)^2)))
return(which.min(cluster.dist)[1])
}
clust1[,l] <- apply(x, 1, closest.cluster1)
# clall\$obscoord
# print(x)
x2 = x[index2[,b],,drop=FALSE]
gm=apply(x2,2,mean)

x2\$clu = cl2\$cluster
clum=(x2 %>% group_by(clu) %>% summarise_all(list(mean)))

am = rbind(clum[,-1],gm)
bm = data.frame(am)
#rownames(bm) = c(paste("C",1:nrow(clum),sep=""),"all")

cl2\$centers = as.matrix(bm[1:krange[l],])
x2 = x2[,-ncol(x2)]
#cl2\$centroid
closest.cluster2 <- function(x) {
cluster.dist <- apply(cl2\$centers, 1, function(y) sqrt(sum((x-y)^2)))
return(which.min(cluster.dist)[1])
}
#clall\$obscoord
clust2[,l] <- apply(x, 1, closest.cluster2)
#replace this

rand[l] <- randIndex(clust1[,l], clust2[,l])

I = length(unique(clust1[,l]))
J = length(unique(clust2[,l]))
chisq = chisq.test(table(clust1[,l],clust2[,l]))\$statistic
conc[l]<- chisq/(nx*(sqrt(I*J)-1))

}
list(clust1=clust1, clust2=clust2, rand=rand, conc=conc)

}

## empirical experiments show parallization does not pay for the
## following (element extraction from list is too fast)
# print(system.time({
# z <- mclapply(as.list(1:nboot), BFUN)
#  }))

#  print(system.time({
z <- lapply(as.list(1:nboot), BFUN)
#  }))

clust1 <- unlist(lapply(z, function(x) x\$clust1))
clust2 <- unlist(lapply(z, function(x) x\$clust2))
dim(clust1) <- dim(clust2) <- c(nx, nk, nboot)

if(nk > 1) {
rand <- t(sapply(z, function(x) x\$rand))
conc <- t(sapply(z, function(x) x\$conc))
}
else {
rand <- as.matrix(sapply(z, function(x) x\$rand))
conc <- as.matrix(sapply(z, function(x) x\$conc))
}
colnames(rand) <- krange
colnames(conc) <- krange

out=list()
out\$nclusrange = krange
out\$clust1 = clust1
out\$clust2 = clust2
out\$index1 = index1
out\$index2 = index2
out\$rand = rand
out\$moc = conc

return(out)

}

randIndex <- function (x, y)
{
x <- as.vector(x)
y <- as.vector(y)
if (length(x) != length(y))
stop("arguments must be vectors of the same length")
tab <- table(x, y)
if (all(dim(tab) == c(1, 1)))
return(1)
a <- sum(choose(tab, 2))
b <- sum(choose(rowSums(tab), 2)) - a
c <- sum(choose(colSums(tab), 2)) - a
d <- choose(sum(tab), 2) - a - b - c
ARI <- (a - (a + b) * (a + c)/(a + b + c + d))/((a + b +
a + c)/2 - (a + b) * (a + c)/(a + b + c + d))
return(ARI)
}

# setGeneric("randIndex", function(x, y, correct=TRUE, original=!correct)
#   standardGeneric("randIndex"))
#
# setMethod("randIndex", signature(x="ANY", y="ANY"),
#           function(x, y, correct=TRUE, original=!correct){
#             if(correct)
#               comPart(x, y, type="ARI")
#             else
#               comPart(x, y, type="RI")
#           })
#
# setMethod("randIndex", signature(x="table", y="missing"),
#           doRandIndex <- function(x, y, correct=TRUE, original=!correct)
#           {
#             if(length(dim(x))!=2)
#               stop("Argument x needs to be a 2-dimensional table.")
#
#             n <- sum(x)
#             ni <- apply(x, 1, sum)
#             nj <- apply(x, 2, sum)
#             n2 <- choose(n, 2)
#
#             rand <- NULL
#             if(correct){
#               nis2 <- sum(choose(ni[ni > 1], 2))
#               njs2 <- sum(choose(nj[nj > 1], 2))
#               rand <- c(ARI=c(sum(choose(x[x > 1], 2)) -
#                                 (nis2 * njs2)/n2)/((nis2 + njs2)/2 - (nis2 * njs2)/n2))
#             }
#
#             if(original){
#               rand <- c(rand, RI = 1 + (sum(x^2) - (sum(ni^2) + sum(nj^2))/2)/n2)
#             }
#
#             return(rand)
#           })
#
# ###**********************************************************
#
# setGeneric("comPart", function(x, y, type=c("ARI","RI","J","FM"))
#   standardGeneric("comPart"))
#
# setMethod("comPart", signature(x="flexclust", y="flexclust"),
#           function(x, y, type){
#             doComPart(clusters(x), clusters(y), type)
#           })
#
# setMethod("comPart", signature(x="flexclust", y="numeric"),
#           function(x, y, type){
#             doComPart(clusters(x), y, type)
#           })
#
# setMethod("comPart", signature(x="numeric", y="flexclust"),
#           function(x, y, type){
#             doComPart(x, clusters(y), type)
#           })
#
# setMethod("comPart", signature(x="numeric", y="numeric"),
#           doComPart <- function(x, y, type=c("ARI","RI","J","FM"))
#           {
#             type <- toupper(type)
#             if(length(x)!=length(y))
#               stop("x an y must have the same length")
#
#             nxx <- countPairs(x, y)
#
#             res <- NULL
#             if("ARI" %in% type)
#               res <- c(doRandIndex(table(x,y), correct=TRUE))
#
#             if("RI" %in% type)
#               res <- c(res, RI=sum(diag(nxx))/sum(nxx))
#
#             if("J" %in% type)
#               res <- c(res, J=nxx[2,2]/sum(nxx[-1]))
#
#             if("FM" %in% type){
#               tab <- table(x)
#               w <- sum(tab*(tab-1))/2
#               tab <- table(y)
#               w <- w*sum(tab*(tab-1))/2
#               res <- c(res, FM=nxx[2,2]/sqrt(w))
#             }
#             res
#           })
#
#
# countPairs <- function(x, y)
# {
#   if(length(x)!=length(y))
#     stop("x an y must have the same length")
#
#   res <- .C(C_countPairs,
#             as.integer(x),
#             as.integer(y),
#             as.integer(length(x)),
#             res=double(4))[["res"]]
#   matrix(res, nrow=2, dimnames=list(0:1,0:1))
# }
#
```

Try the clustrd package in your browser

Any scripts or data that you put into this service are public.

clustrd documentation built on May 8, 2019, 5:03 p.m.