Nothing
# This should animate the Sunshine Duration Analysis of the year 2018
plot_fieldmean_and_map <- function(variable,
country_code,
climate_year_start,
climate_year_end,
show_extreme_climate_years,
climatology_until_eoy,
infile,
infile2,
infile_map,
temp_dir,
out_dir,
start_date,
end_date,
language,
animation_pace,
output_format,
min_value,
max_value,
color_pal,
nbreaks,
freeze_animation,
outfile_name,
adjustAccumulation,
states,
dwd_logo,
verbose) {
# Make sure that any user settings are reset when the function exits
# This is a requirement by CRAN
oldpar <- graphics::par(no.readonly = TRUE)
# Warning: In graphics::par(oldpar) : par(new) ohne Plot aufgerufen
on.exit(suppressWarnings(graphics::par(oldpar)))
# Dimensions of pic
pic.width <- 900
pic.height <- 500
# Compute some parameters from arguments
start_doy <- as.numeric(format(start_date, format = "%j"))
finish_doy <- as.numeric(format(end_date, format = "%j"))
if (is_leap_year(as.numeric(format(as.Date(start_date),"%Y")))) {
start_doy <- ifelse(start_doy >= 60, start_doy - 1, start_doy)
}
if (is_leap_year(as.numeric(format(as.Date(end_date),"%Y")))) {
finish_doy <- ifelse(finish_doy >= 60, finish_doy - 1, finish_doy)
}
country_name <- get_country_name(country_code, language = language)
country_name_en <- get_country_name(country_code)
# CMSAF logo
# Size and location of the logo
logo.size <- 0.4
logo.x <- 0.81
logo.y <- 0.06
logo_cmsaf_path <- system.file(
"extdata",
"CMSAF_logo.png",
package = "cmsafvis",
mustWork = TRUE
)
logo_cmsaf <- png::readPNG(logo_cmsaf_path)
dims <- dim(logo_cmsaf)[1:2]
AR <- dims[1] / dims[2] * 5 / 5.5
# DWD Logo
if (dwd_logo){
# Size and location of the logo
logo.size2 <- 0.1
logo.x2 <- 0.92
logo.y2 <- 0.22
logo_dwd_path <- system.file(
"extdata",
"DWD_logo.png",
package = "cmsafvis",
mustWork = TRUE
)
logo_dwd <- png::readPNG(logo_dwd_path)
dims2 <- dim(logo_dwd)[1:2]
AR2 <- dims2[1] / dims2[2] * 5 / 5.5
}
# line thickness
lwd1 <- 5
lwd2 <- 2
if (states) {
check_state_dependencies()
statesHigh <- rnaturalearth::ne_states(country_name_en)
state_lines <- methods::as(statesHigh, "SpatialLines")
}
countriesHigh <- numeric(0) # Hack to prevent IDE warning in second next line (see https://stackoverflow.com/questions/62091444/how-to-load-data-from-other-package-in-my-package)
utils::data("countriesHigh", package = "rworldxtra", envir = environment())
world_countries <- methods::as(countriesHigh, "SpatialLines")
# read in netcdf data
nc_map <- ncdf4::nc_open(infile_map)
field_source <- ncdf4::ncvar_get(nc_map, variable)
lon <- ncdf4::ncvar_get(nc_map, "lon")
lat <- ncdf4::ncvar_get(nc_map, "lat")
ncdf4::nc_close(nc_map)
duration <- length(field_source[1, 1, ])
# set language
data_year <- format(end_date, "%Y")
map_title <- get_title(
variable = variable,
language = language,
plot_type = "anomaly_map"
)
map_title <- paste0(map_title, " (", country_name, ")")
plot_title <- get_title(
variable = variable,
language = language,
year = data_year
)
units_text <- paste0(
"[",
get_unit(variable = variable, language = language),
"]"
)
ylab_text <- get_axis_label(variable, language)
date_format_string <- ifelse(language == "deu", "%d.%m.%Y", "%Y-%m-%d")
legend_text <- paste0(
get_climatology_word(language),
" (",
climate_year_start,
"-",
climate_year_end,
")"
)
nx <- length(lon)
ny <- length(lat)
data_start <- 1
data_stop <- finish_doy - start_doy + 1
field_to_plot <- field_source[, , data_stop]
field_for_setup <- field_source[, , data_start:data_stop]
# define colors
bwr_col <-
grDevices::colorRampPalette(
c(
"lightgreen",
"green",
"orange",
"orangered1",
"red",
"magenta"
)
)
duration <- length(field_for_setup[1, 1, ])
limit_lower <- min(field_for_setup[, , duration], na.rm = TRUE)
limit_lower_z <- signif(floor(limit_lower - 50), digits = 1)
limit_upper <- max(field_for_setup, na.rm = TRUE)
limit_upper_z <- signif(ceiling(limit_upper + 50), digits = 2)
#select the range of the color bar
min_value_default <- 0
max_value_default <- limit_upper_z
freq.ticks <- 1
if (abs(max(field_for_setup[, , duration], na.rm = TRUE)) < abs(min(field_for_setup[, , duration], na.rm = TRUE))) {
limit_lower <- min(field_for_setup[, , duration], na.rm = TRUE)
limit_lower_z <- signif(floor(limit_lower - 50), digits = 1)
min_value_default <- limit_lower_z
max_value_default <- (-1) * min_value_default
}
else{
limit_upper <- max(field_for_setup, na.rm = TRUE)
limit_upper_z <- signif(ceiling(limit_upper + 50), digits = 1)
max_value_default <- limit_upper_z
min_value_default <- (-1) * max_value_default
}
bwr_col <-
grDevices::colorRampPalette(c(
"darkblue",
"blue",
"lightskyblue",
"orangered1",
"red",
"red4"
))
if (color_pal == 2){bwr_col <-
grDevices::colorRampPalette(c("#474747", "#7a7a7a", "#a8a8a8", "#cdcdcd",
"#e2e2e2", "#f9f9f9", "#fdf3db", "#fee8b2",
"#fedf8c", "#fed66c", "#fdcf45", "#fac631"))
}
if (color_pal == 3){bwr_col <-
grDevices::colorRampPalette(c("#5c3209", "#96560e", "#b27028", "#d1a759",
"#dfc07a", "#f5e5bf", "#fefefe","#b0dfda",
"#6fc0b8", "#389c94", "#078470", "#045f5a",
"#0f3c33"))
}
# Overwrite color arguments with default values if non are specified
if (is.null(min_value)) {
min_value <- min_value_default
}
if (is.null(max_value)) {
max_value <- max_value_default
}
coldiff <- max_value - min_value
####################
# Set the colors and the color bar
k <- 8:12
diffs <- min_value + k*ceiling(coldiff/10) - max_value
seq_max <- max_value + min(diffs[diffs >= 0])
# Set the colors and the color bar
if (is.null(nbreaks)) {
col.breaks <- seq(min_value, seq_max, by = ceiling(coldiff/10))
ncol <- length(col.breaks)
} else {
col.breaks <- seq(min_value, max_value, length.out = nbreaks)
col.breaks <- round(col.breaks, digits = 0)
ncol <- nbreaks
}
at.ticks <- seq(1, ncol, freq.ticks)
names.ticks <- col.breaks[at.ticks]
zlim <- c(1, ncol)
ncol <- max(2, ncol)
colors <- bwr_col(ncol - 1)
# read in netcdf data
# read in annual mean
nc_mean <- ncdf4::nc_open(infile)
var_clima <- ncdf4::ncvar_get(nc_mean, variable)
ncdf4::nc_close(nc_mean)
# read in current data
nc_current <- ncdf4::nc_open(infile2)
var_current <- ncdf4::ncvar_get(nc_current, variable)
ncdf4::nc_close(nc_current)
dates <- seq(
as.Date(paste(data_year, 1, 1, sep = "-")),
as.Date(paste(data_year, 12, 31, sep = "-")),
by = "day"
)
# Remove Feb 29 in leap year.
if (length(dates) == 366) {
dates <- dates[-60]
}
# Preparing data
if (start_doy > 1 || !climatology_until_eoy) {
plot_stop <- finish_doy
} else {
plot_stop <- 365
}
duration <- length(var_current)
climate_duration <- plot_stop - start_doy + 1
var_current_to_plot <- var_current
var_climate_to_plot <- var_clima[start_doy:plot_stop]
if (start_doy > 1 && adjustAccumulation) {
# If data was accumulated and we don't plot starting from January 1st, the data doesn't start at 0.
# We correct this by subtracting the value of the first date from alle dates.
var_current_to_plot <- var_current_to_plot - rep(var_current[1], duration)
var_climate_to_plot <- var_climate_to_plot - rep(var_climate_to_plot[1], climate_duration)
}
############################################################################################
# plot graphic
if (output_format == "graphic") {
limit <- -Inf
for (climate_year in seq(from = climate_year_start, to = climate_year_end, by = 1)) {
input <- add_ncdf_ext(construct_filename(variable,
climate_year,
country_code,
"fldmean"))
input <- file.path(temp_dir, input)
nc_fieldmean <- ncdf4::nc_open(input)
var_ensemble <- ncdf4::ncvar_get(nc_fieldmean, variable)
ncdf4::nc_close(nc_fieldmean)
# Cut the data
var_ensemble <- var_ensemble[start_doy:finish_doy]
# Remove accumulation of previous dates
if (start_doy > 1 && adjustAccumulation) {
var_ensemble <- var_ensemble - rep(var_ensemble[1], climate_duration)
}
assign(paste0(variable, "_acc_", climate_year), var_ensemble)
# Compute y limit dependent on accumulation process
if (adjustAccumulation) {
limit <- max(limit, var_ensemble[length(var_ensemble)])
} else {
limit <- max(limit, max(var_ensemble, na.rm = TRUE))
}
}
limit_y <- signif(ceiling(limit + limit/15), digits = 2)
picpath <- out_dir
picout <- file.path(picpath, outfile_name)
grDevices::png(
picout,
width = pic.width,
height = pic.height,
units = "px",
pointsize = 12
)
graphics::par(mfrow = c(1, 2))
plot_length <- length(start_doy:plot_stop)
graphics::par(
cex = 1.2,
oma = c(0, 0, 0, 0),
mar = c(2.2, 4, 3.5, 2),
mgp = c(3, 1, 0)
)
set_time_locale(language)
tryCatch(
graphics::plot(
dates[start_doy:plot_stop],
var_climate_to_plot,
type = "l",
lwd = lwd1,
xlab = "",
ylab = ylab_text,
main = plot_title,
cex.lab = 1.2,
ylim = c(0, limit_y),
cex.main = 1.2
),
finally = {set_time_locale("")}
)
# Variables for adding max/min end value to plot
yearMaxEndValue <- -Inf
yearMaxEnd <- NULL
yearMinEndValue <- Inf
yearMinEnd <- NULL
# For the min year y position take the min value at 90%
yearMinPosIndex <- round(plot_length*0.9)
yearMinPosValue <- Inf
# start loop to plot all years of climatology
for (climate_year in seq(from = climate_year_start, to = climate_year_end, by = 1)) {
dat <- get(paste0(variable, "_acc_", climate_year))
set_time_locale(language)
tryCatch(
graphics::lines(
dates[start_doy:plot_stop],
dat,
col = "grey",
lwd = lwd2
),
finally = {set_time_locale("")}
)
# Determine min and max end values
if (dat[plot_length] > yearMaxEndValue) {
yearMaxEndValue <- dat[plot_length]
yearMaxEnd <- climate_year
}
if (dat[plot_length] < yearMinEndValue) {
yearMinEndValue <- dat[plot_length]
yearMinEnd <- climate_year
}
if (dat[yearMinPosIndex] < yearMinPosValue) {
yearMinPosValue <- dat[yearMinPosIndex]
}
}
set_time_locale(language)
tryCatch({
graphics::lines(
dates[start_doy:plot_stop],
var_climate_to_plot,
col = "black",
lwd = lwd1
)
graphics::lines(
dates[start_doy:finish_doy],
var_current_to_plot,
col = "red",
lwd = lwd1
)},
finally = {set_time_locale("")}
)
graphics::legend(
"topleft",
legend = c(legend_text, data_year),
col = c("black", "red"),
lwd = 4,
cex = 1.0
)
graphics::par(usr = c(0, 1, 0, 1))
size <- logo.size
x <- logo.x
y <- logo.y
graphics::rasterImage(logo_cmsaf,
x - (size / 2),
y - (AR * size / 2),
x + (size / 2),
y + (AR * size / 2),
interpolate = TRUE)
if (dwd_logo){
size <- logo.size2
x <- logo.x2
y <- logo.y2
graphics::rasterImage(logo_dwd,
x - (size / 2),
y - (AR2 * size / 2),
x + (size / 2),
y + (AR2 * size / 2),
interpolate = TRUE)
}
if (show_extreme_climate_years && adjustAccumulation) {
y_val_max <- yearMaxEndValue/limit_y
y_val_min <- yearMinPosValue/limit_y
graphics::text(x = 0.9, y = y_val_max, labels = yearMaxEnd, col = "darkgrey")
graphics::text(x = 0.9, y = y_val_min, labels = yearMinEnd, pos = 1, col = "darkgrey")
}
################################################################################################################
# plot var Anomaly map
# To plot a meaningful color bar the data need to be transfered to numbers from 1.1 to nticks + 0.1
field.plot_freeze <- matrix(ncol = ny, nrow = nx)
for (l in seq(1, ncol - 1)) {
idx <- which(field_to_plot >= col.breaks[l] &
field_to_plot <= col.breaks[l + 1],
arr.ind = TRUE)
field.plot_freeze[idx] <- l + 0.1
}
lg_mar <- 4.5 + floor(log10(max(abs(names.ticks))))
# Start animation
graphics::par(
cex = 1.3,
mgp = c(2, 1, 0),
mar = c(2, 1, 3, 4.5) + 0.1
)
fields::image.plot(
lon,
lat,
field.plot_freeze,
xlab = "",
ylab = "",
col = colors,
xaxt = 'n',
yaxt = 'n',
main = map_title,
zlim = zlim,
breaks = c(1:ncol),
nlevel = ncol - 1,
legend.mar = lg_mar,
axis.args = list(at = at.ticks, labels = names.ticks),
cex.main = 1.1
)
# State and/or country borders
if (states) {
raster::plot(state_lines, add = TRUE, lwd = 0.75)
raster::plot(world_countries, add = TRUE, lwd = 1.5)
} else {
raster::plot(world_countries, add = TRUE, lwd = 1)
}
graphics::par(usr = c(0, 1, 0, 1))
size <- logo.size
x <- logo.x
y <- logo.y
graphics::rasterImage(logo_cmsaf,
x - (size / 2),
y - (AR * size / 2),
x + (size / 2),
y + (AR * size / 2),
interpolate = TRUE)
if (dwd_logo){
size <- logo.size2
x <- logo.x2
y <- logo.y2
graphics::rasterImage(logo_dwd,
x - (size / 2),
y - (AR2 * size / 2),
x + (size / 2),
y + (AR2 * size / 2),
interpolate = TRUE)
}
if (start_doy == 1 && climatology_until_eoy) {
box_dates <- format(dates[finish_doy], format = date_format_string)
} else {
box_dates <- paste(
format(dates[start_doy], format = date_format_string),
"-",
format(dates[finish_doy], format = date_format_string)
)
}
graphics::legend("topright", legend = box_dates, cex = 1.12)
graphics::mtext(
paste(units_text),
side = 1,
line = -2.9,
at = 0.958,
outer = TRUE,
cex = 1.3
) # default: at = 0.958
grDevices::dev.off()
if (verbose) {
message(paste("Image has been created at", normalizePath(picout)))
}
}
######################################################################################################
if (output_format == "animation") {
viddir <- out_dir
vidout <- file.path(viddir, outfile_name)
nr_frozen_frames <- 100
if (verbose) {
pb <- progress::progress_bar$new(
format = "Creating animation [:bar] :percent eta: :eta",
total = duration + ifelse(freeze_animation, nr_frozen_frames, 0),
clear = TRUE,
callback = function(x) {message("Created animation")}
)
}
animation::saveVideo(
video.name = vidout,
img.name = "Rplot",
other.opts = "-pix_fmt yuv420p -loglevel warning", # See 'other.opts' of ?animation::saveVideo
interval = animation_pace,
ani.height = pic.height,
ani.width = pic.width,
units = "px",
autobrowse = FALSE, # means that the output file isn't opened automatically
verbose = FALSE,
expr = {
for (i in 1:duration) {
# plot var graphic
limit <- -Inf
# start loop over all years and read in netcdf data for annual sum of var
for (climate_year in seq(from = climate_year_start,
to = climate_year_end,
by = 1)) {
input <- add_ncdf_ext(construct_filename(variable,
climate_year,
country_code,
"fldmean"))
input <- file.path(temp_dir, input)
nc_fieldmean <- ncdf4::nc_open(input)
var_ensemble <- ncdf4::ncvar_get(nc_fieldmean, variable)
ncdf4::nc_close(nc_fieldmean)
# Cut the data
var_ensemble <- var_ensemble[start_doy:finish_doy]
# Remove accumulation of previous dates
if (start_doy > 1 && adjustAccumulation) {
var_ensemble <- var_ensemble - rep(var_ensemble[1], climate_duration)
}
assign(paste0(variable, "_acc_", climate_year), var_ensemble)
# Compute y limit dependent on accumulation process
if (adjustAccumulation) {
limit <- max(limit, var_ensemble[length(var_ensemble)])
} else {
limit <- max(limit, max(var_ensemble, na.rm = TRUE))
}
}
limit_y <- signif(ceiling(limit + limit/15), digits = 2)
plot_length <- plot_stop - start_doy + 1
corr_date <- start_doy + i - 1
graphics::par(mfrow = c(1, 2))
graphics::par(
cex = 1.2,
oma = c(0, 0, 0, 0),
mar = c(2.2, 4, 3.5, 2),
mgp = c(3, 1, 0)
)
set_time_locale(language)
tryCatch(
graphics::plot(
dates[start_doy:plot_stop],
var_climate_to_plot,
type = "l",
lwd = lwd1,
xlab = "",
ylab = ylab_text,
main = plot_title,
cex.lab = 1.2,
ylim = c(0, limit_y),
cex.main = 1.2
),
finally = {set_time_locale("")}
)
# Variables for adding max/min end value to plot
yearMaxEndValue <- -Inf
yearMaxEnd <- NULL
yearMinEndValue <- Inf
yearMinEnd <- NULL
# For the min year y position take the min value at 90%
yearMinPosIndex <- round(plot_length*0.9)
yearMinPosValue <- Inf
# start loop to plot all years of climatology
for (climate_year in seq(from = climate_year_start,
to = climate_year_end,
by = 1)) {
dat <- get(paste0(variable, "_acc_", climate_year))
set_time_locale(language)
tryCatch(
graphics::lines(
dates[start_doy:plot_stop],
dat,
col = "grey",
lwd = lwd2
),
finally = {set_time_locale("")}
)
# Determine min and max end values
if (dat[plot_length] > yearMaxEndValue) {
yearMaxEndValue <- dat[plot_length]
yearMaxEnd <- climate_year
}
if (dat[plot_length] < yearMinEndValue) {
yearMinEndValue <- dat[plot_length]
yearMinEnd <- climate_year
}
if (dat[yearMinPosIndex] < yearMinPosValue) {
yearMinPosValue <- dat[yearMinPosIndex]
}
}
var_current_seq <- var_current_to_plot[1:i]
set_time_locale(language)
tryCatch({
graphics::lines(
dates[start_doy:plot_stop],
var_climate_to_plot,
col = "black",
lwd = lwd1
)
graphics::lines(
dates[start_doy:corr_date],
var_current_seq,
col = "red",
lwd = lwd1
)},
finally = {set_time_locale("")}
)
gaa <- format(dates[corr_date], format = date_format_string)
graphics::legend(
"topleft",
legend = c(legend_text, gaa),
col = c("black", "red"),
lwd = 4,
cex = 1.0
)
graphics::par(usr = c(0, 1, 0, 1))
size <- logo.size
x <- logo.x
y <- logo.y
graphics::rasterImage(logo_cmsaf,
x - (size / 2),
y - (AR * size / 2),
x + (size / 2),
y + (AR * size / 2),
interpolate = TRUE)
if (dwd_logo){
size <- logo.size2
x <- logo.x2
y <- logo.y2
graphics::rasterImage(logo_dwd,
x - (size / 2),
y - (AR2 * size / 2),
x + (size / 2),
y + (AR2 * size / 2),
interpolate = TRUE)
}
if (show_extreme_climate_years && adjustAccumulation) {
y_val_max <- yearMaxEndValue/limit_y
y_val_min <- yearMinPosValue/limit_y
graphics::text(x = 0.9, y = y_val_max, labels = yearMaxEnd, col = "darkgrey")
graphics::text(x = 0.9, y = y_val_min, labels = yearMinEnd, pos = 1, col = "darkgrey")
}
################################################################################################################
# plot var_2018 Anomaly map
field_to_animate <- field_for_setup[, , i]
# To plot a meaningful color bar the data need to be transfered to numbers from 1.1 to nticks + 0.1
field.plot_freeze <- matrix(ncol = ny, nrow = nx)
for (l in seq(1, ncol - 1)) {
idx <-
which(((field_to_animate >= col.breaks[l]) &
(field_to_animate <= col.breaks[l + 1])
), arr.ind = TRUE)
field.plot_freeze[idx] <- l + 0.1
}
# Start animation
if (verbose) {
pb$tick()
}
lg_mar <- 4.5 + floor(log10(max(abs(names.ticks))))
graphics::par(
cex = 1.3,
mgp = c(2, 1, 0),
mar = c(2, 1, 3, 4.5) + 0.1
)
fields::image.plot(
lon,
lat,
field.plot_freeze,
xlab = "",
ylab = "",
col = colors,
xaxt = 'n',
yaxt = 'n',
main = map_title,
zlim = zlim,
breaks = c(1:ncol),
nlevel = ncol - 1,
legend.mar = lg_mar,
axis.args = list(at = at.ticks, labels = names.ticks),
cex.main = 1.1
)
# State and/or country borders
if (states) {
raster::plot(state_lines, add = TRUE, lwd = 0.75)
raster::plot(world_countries, add = TRUE, lwd = 1.5)
} else {
raster::plot(world_countries, add = TRUE, lwd = 1)
}
graphics::par(usr = c(0, 1, 0, 1))
size <- logo.size
x <- logo.x
y <- logo.y
graphics::rasterImage(logo_cmsaf,
x - (size / 2),
y - (AR * size / 2),
x + (size / 2),
y + (AR * size / 2),
interpolate = TRUE)
if (dwd_logo){
size <- logo.size2
x <- logo.x2
y <- logo.y2
graphics::rasterImage(logo_dwd,
x - (size / 2),
y - (AR2 * size / 2),
x + (size / 2),
y + (AR2 * size / 2),
interpolate = TRUE)
}
if (start_doy == 1 && climatology_until_eoy) {
box_dates <- format(dates[i], format = date_format_string)
} else {
box_dates <- paste(
format(dates[start_doy], format = date_format_string),
"-",
format(dates[corr_date], format = date_format_string)
)
}
graphics::legend("topright",
legend = box_dates,
cex = 1.12)
graphics::mtext(
paste(units_text),
side = 1,
line = -2.9,
at = 0.958,
outer = TRUE,
cex = 1.3
) # default: at = 0.958
} #end of "daily" loop
###############################################################################################################
if (freeze_animation) {
for (k in 1:nr_frozen_frames) {
# plot var_graphic
limit <- -Inf
# start loop over all years and read in netcdf data for annual sum of var
for (climate_year in seq(from = climate_year_start,
to = climate_year_end,
by = 1)) {
input <- add_ncdf_ext(construct_filename(variable,
climate_year,
country_code,
"fldmean"))
input <- file.path(temp_dir, input)
nc_fieldmean <- ncdf4::nc_open(input)
var_ensemble <- ncdf4::ncvar_get(nc_fieldmean, variable)
ncdf4::nc_close(nc_fieldmean)
# Cut the data
var_ensemble <- var_ensemble[start_doy:finish_doy]
# Remove accumulation of previous dates
if (start_doy > 1 && adjustAccumulation) {
var_ensemble <- var_ensemble - rep(var_ensemble[1], climate_duration)
}
assign(paste0(variable, "_acc_", climate_year), var_ensemble)
# Compute y limit dependent on accumulation process
if (adjustAccumulation) {
limit <- max(limit, var_ensemble[length(var_ensemble)])
} else {
limit <- max(limit, max(var_ensemble, na.rm = TRUE))
}
}
limit_y <- signif(ceiling(limit + limit/15), digits = 2)
plot_length <- plot_stop - start_doy
graphics::par(mfrow = c(1, 2))
graphics::par(
cex = 1.2,
oma = c(0, 0, 0, 0),
mar = c(2.2, 4, 3.5, 2),
mgp = c(3, 1, 0)
)
set_time_locale(language)
tryCatch(
graphics::plot(
dates[start_doy:plot_stop],
var_climate_to_plot,
type = "l",
lwd = lwd1,
xlab = "",
ylab = ylab_text,
main = plot_title,
cex.lab = 1.2,
ylim = c(0, limit_y),
cex.main = 1.2
),
finally = {set_time_locale("")}
)
# start loop to plot all years of climatology
for (climate_year in seq(from = climate_year_start,
to = climate_year_end,
by = 1)) {
dat <- get(paste0(variable, "_acc_", climate_year))
set_time_locale(language)
tryCatch(
graphics::lines(
dates[start_doy:plot_stop],
dat,
col = "grey",
lwd = lwd2
),
finally = {set_time_locale("")}
)
}
set_time_locale(language)
tryCatch({
graphics::lines(
dates[start_doy:plot_stop],
var_climate_to_plot,
col = "black",
lwd = lwd1
)
graphics::lines(
dates[start_doy:corr_date],
var_current_to_plot,
col = "red",
lwd = lwd1
)},
finally = {set_time_locale("")}
)
graphics::legend(
"topleft",
legend = c(legend_text, data_year),
col = c("black", "red"),
lwd = 4,
cex = 1.0
)
graphics::par(usr = c(0, 1, 0, 1))
size <- logo.size
x <- logo.x
y <- logo.y
graphics::rasterImage(logo_cmsaf,
x - (size / 2),
y - (AR * size / 2),
x + (size / 2),
y + (AR * size / 2),
interpolate = TRUE)
if (dwd_logo){
size <- logo.size2
x <- logo.x2
y <- logo.y2
graphics::rasterImage(
logo_dwd,
x - (size / 2),
y - (AR2 * size / 2),
x + (size / 2),
y + (AR2 * size / 2),
interpolate = TRUE
)
}
if (show_extreme_climate_years && adjustAccumulation) {
y_val_max <- yearMaxEndValue/limit_y
y_val_min <- yearMinPosValue/limit_y
graphics::text(x = 0.9, y = y_val_max, labels = yearMaxEnd, col = "darkgrey")
graphics::text(x = 0.9, y = y_val_min, labels = yearMinEnd, pos = 1, col = "darkgrey")
}
################################################################################################################
field_to_animate <- field_for_setup[, , duration]
# To plot a meaningful color bar the data need to be transfered to numbers from 1.1 to nticks + 0.1
field.plot_freeze <- matrix(ncol = ny, nrow = nx)
for (l in seq(1, ncol - 1)) {
idx <- which(
field_to_animate >= col.breaks[l] &
field_to_animate <= col.breaks[l + 1],
arr.ind = TRUE
)
field.plot_freeze[idx] <- l + 0.1
}
# Start animation
if (verbose) {
pb$tick()
}
lg_mar <- 4.5 + floor(log10(max(abs(names.ticks))))
graphics::par(
cex = 1.3,
mgp = c(2, 1, 0),
mar = c(2, 1, 3, 4.5) + 0.1
)
fields::image.plot(
lon,
lat,
field.plot_freeze,
xlab = "",
ylab = "",
col = colors,
xaxt = 'n',
yaxt = 'n',
main = map_title,
zlim = zlim,
breaks = c(1:ncol),
nlevel = ncol - 1,
legend.mar = lg_mar,
axis.args = list(at = at.ticks, labels = names.ticks),
cex.main = 1.1
)
# State and/or country borders
if (states) {
raster::plot(state_lines, add = TRUE, lwd = 0.75)
raster::plot(world_countries, add = TRUE, lwd = 1.5)
} else {
raster::plot(world_countries, add = TRUE, lwd = 1)
}
graphics::par(usr = c(0, 1, 0, 1))
size <- logo.size
x <- logo.x
y <- logo.y
graphics::rasterImage(logo_cmsaf,
x - (size / 2),
y - (AR * size / 2),
x + (size / 2),
y + (AR * size / 2),
interpolate = TRUE)
if (dwd_logo){
size <- logo.size2
x <- logo.x2
y <- logo.y2
graphics::rasterImage(
logo_dwd,
x - (size / 2),
y - (AR2 * size / 2),
x + (size / 2),
y + (AR2 * size / 2),
interpolate = TRUE
)
}
box_dates <- paste(
format(dates[start_doy], format = date_format_string),
"-",
format(dates[corr_date], format = date_format_string)
)
graphics::legend("topright",
legend = box_dates,
cex = 1.12)
graphics::mtext(
paste(units_text),
side = 1,
line = -2.9,
at = 0.958,
outer = TRUE,
cex = 1.3
) # default: at = 0.958
} # end of for frames
} # end of if freeze_animation
} # end of saveVideo expr
) # end of saveVideo
} #end of if
# Print stats
if (verbose) {
dat_max <- get(paste0(variable, "_acc_", yearMaxEnd))
dat_min <- get(paste0(variable, "_acc_", yearMinEnd))
titles <- c("Analyzed year", "Climatology", "Maximum valued year", "Minimum valued year")
standout_years <- c(format(start_date, format = "%Y"),
paste(climate_year_start, climate_year_end, sep = " - "),
yearMaxEnd,
yearMinEnd)
standout_values <- c(var_current_to_plot[length(var_current_to_plot)],
var_climate_to_plot[length(var_current_to_plot)],
dat_max[length(var_current_to_plot)],
dat_min[length(var_current_to_plot)])
final_values <- data.frame(title = titles, years = standout_years, value = standout_values)
ranking.values <- ranking(out_dir, variable, country_code, climate_year_start, climate_year_end, finish_doy)
calc.parameters.monitor.climate(final_values, ranking.values)
# Print message
if (adjustAccumulation) {
message("Significant values at the final time period:")
print(final_values)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.