R/fhdbetween_fhdwithin.R

Defines functions fHDwithin.data.frame fHDwithin.matrix fHDwithin.default fHDwithin fHDbetween.data.frame fHDbetween.matrix fHDbetween.default fHDbetween HDB.list HDB.pdata.frame HDB.data.frame HDB.zoo HDB.matrix HDB.pseries HDB.default HDB fhdbetween.list fhdbetween.data.frame fhdbetween.pdata.frame fhdbetween.zoo fhdbetween.matrix fhdbetween.pseries fhdbetween.default fhdbetween HDW.list HDW.pdata.frame HDW.data.frame HDW.zoo HDW.matrix HDW.pseries HDW.default HDW fhdwithin.list fhdwithin.data.frame fhdwithin.pdata.frame fhdwithin.zoo fhdwithin.matrix fhdwithin.pseries fhdwithin.default fhdwithin flmres tcrossprod2 `%**%` subsetfl getfl slinteract finteract myModFrame demean

Documented in fhdbetween fHDbetween fhdbetween.data.frame fHDbetween.data.frame fhdbetween.default fHDbetween.default fhdbetween.matrix fHDbetween.matrix fhdbetween.pdata.frame fhdbetween.pseries fhdwithin fHDwithin fhdwithin.data.frame fHDwithin.data.frame fhdwithin.default fHDwithin.default fhdwithin.matrix fHDwithin.matrix fhdwithin.pdata.frame fhdwithin.pseries HDB HDB.data.frame HDB.default HDB.matrix HDB.pdata.frame HDB.pseries HDW HDW.data.frame HDW.default HDW.matrix HDW.pdata.frame HDW.pseries

# TODO: More tests for attribute handling + Optimize linear fitting...

demean <- function(x, fl, weights, ..., means = FALSE) {
  if(length(fl) == 1L && is.null(attr(fl, "slope.flag"))) {
    clx <- oldClass(x) # Need to do this because could call fbetween.grouped_df of fbetween.pseries / pdata.frame
    if(means) return(`oldClass<-`(fbetween(unclass(x), fl[[1L]], weights, na.rm = FALSE), clx)) else
      return(`oldClass<-`(fwithin(unclass(x), fl[[1L]], weights, na.rm = FALSE), clx))
  }
  msg <- "For higher-dimensional centering and projecting out interactions need to install.packages('%s'), then unload [detach('package:collapse', unload = TRUE)] and reload [library(collapse)]."
  res <- getenvFUN("fixest_demean", msg)(x, fl, attr(fl, "slope.vars"), attr(fl, "slope.flag"),
                                         weights = weights, ..., notes = FALSE, im_confident = TRUE)
  if(!means) return(duplAttributes(res, x))
    # if(!is.matrix(x)) dim(res) <- NULL # also need for flmres... e.g. with weights... intercept is no longer always added, so res needs to be a matrix...
    # Need matrix dimensions... for subset in variable.wise... do.call(cbind, fl[!fc]) needs to be preserved... # return(if(means) x - drop(res) else drop(res))
  if(is.atomic(res)) return(duplAttributes(x - res, x))
  duplAttributes(.mapply(`-`, list(unattrib(x), unattrib(res)), NULL), x)
}

myModFrame <- function(f, data) {
  t <- terms.formula(f)
  v <- attr(t, "variables")
  res <- eval(v, data, parent.frame()) # faster than res <- eval(substitute(with(data, e), list(e = v)))
  attributes(res) <- list(names = as.character(v[-1L]),
                          row.names = .set_row_names(fnrow(data)),
                          class = "data.frame",
                          terms = t)
  res
}
# Example:
# mf <- myModFrame( ~ factor(cyl)*poly(carb, 2) + factor(cyl):factor(vs) + factor(cyl):factor(vs):wt + factor(cyl):mpg + factor(am) + factor(hp > 146):qsec + vs + carb:am, data = mtcars)
# mf <- myModFrame( ~ factor(cyl)*poly(carb, 2) + factor(cyl):factor(vs) + factor(cyl):mpg + factor(am) + factor(hp > 146):qsec + vs + carb:am, data = mtcars)

finteract <- function(x, facts, mf) { # x and facts are logical
  f <- which(x & facts)
  if(length(f) == 1L) mf[[f]] else if(length(f) == 2L) do.call(`:`, mf[f]) else
    as_factor_GRP(GRP.default(mf[f], call = FALSE))
}

slinteract <- function(sl, facts, mf) { # sl and facts are  logical
  sl <- which(sl & !facts)
  res <- if(length(sl) == 1L) mf[[sl]] else do.call(`*`, mf[sl])
  if(is.matrix(res)) mctl(res) else list(res)
}

# This is probably the craziest piece of code in the whole package:
# It takes a model.frame as input and computes from it the inputs for both fixest::demean()
# and linear model fitting


getfl <- function(mf) {

  facts <- .Call(C_vtypes, mf, 2L) # vapply(unattrib(mf), is.factor, TRUE)

  # Any factors
  if(any(facts)) {

    terms <- attributes(attr(mf, "terms"))
    clmf <- oldClass(mf)
    oldClass(mf) <- NULL # good ??
    tl <- terms[["term.labels"]]
    factors <- terms[[2L]]
    fctterms <- fcolSums(factors[facts, , drop = FALSE]) > 0
    fctinteract <- fctterms & fcolSums(factors) > 1 # best ??

    # Any interactions involving factors
    if(any(fctinteract)) {
      modelterms <- tl[!fctterms & tl %in% names(which(rowSums(factors) <= 1))]
      single <- rowSums(factors[facts, , drop = FALSE] > 0L) == 1 # These are either single factors or factors only appearing inside an interaction...
      factors <- factors[, fctinteract, drop = FALSE]
      nointeract <- frowSums(factors[facts, , drop = FALSE]) == 0  # These are factors not appearing in interactions
      singlefct <- names(which(single & nointeract)) # better way ??  # tl[fctterms & !fctinteract]
      intterms <-  mctl(factors > 0L, TRUE) # Need names here
      fctfct <- colSums(factors[!facts, , drop = FALSE]) == 0 # These are factor-factor interactions... need names

      fctdat <- NULL # best way to do this ?? or as before with pre-allocation ??
      lsf <- length(singlefct)
      lff <- bsum(fctfct)
      if(lsf) fctdat <- mf[singlefct] # unattrib() -> wrap around at the end... Nah, better with names...
      if(lff) fctdat <- c(fctdat, lapply(intterms[fctfct], finteract, TRUE, mf))

      # Any heterogeneous slopes
      if(lff != length(intterms)) {
        intslope <- intterms[!fctfct]
        slflag <- integer(lsf)

        factors <- factors[facts, !fctfct, drop = FALSE]
        dimnames(factors) <- NULL

        # Could have imp:exp and imp:exp:year, so we need to partial match imp:exp in all slope terms...
        imc <- im <- pmatch(names(which(fctfct)), names(intslope), nomatch = 0L) # need names to match here !!
        if(any(im)) { # first the fact:fact in order (only add slopes), then the other ones
          if(!all(im)) im <- im[im > 0L]

          # Check for duplicate factors in interactions (largely independent of the other stuff)
          dupchk <- factors[, -im, drop = FALSE] > 0L # same as intslopes...
          if(any(dupfct <- frowSums(dupchk) > 1)) { # Check for factors with multiple slopes...
            if(bsum(dupfct) > 1L) stop("Cannot currently support multiple factors with multiple slopes...")
            dupfct <- which(dupchk[dupfct, ]) # This accounts for im
            fctdat <- c(fctdat, lapply(c(intslope[-im][dupfct[1L]], intslope[-im][-dupfct]), finteract, facts, mf))
          } else
            fctdat <- c(fctdat, lapply(intslope[-im], finteract, facts, mf)) # only get factors not already in fctfct...

          slopes <- lapply(c(intslope[im], intslope[-im]), slinteract, facts, mf)
          lsl <- lengths(slopes, FALSE) # No names here
          lim <- seq_along(im)
          imc[imc > 0L] <- lsl[lim] # This is ok, these are also included elsewhere
          slflag <- c(slflag, imc)

          if(length(lsl) != length(lim)) { # The other cases... if exist
            othmc <- lsl[-lim]
            if(any(alone <- single & !nointeract)) {
              alone <- fcolSums(factors[alone, -im, drop = FALSE]) > 0 # This finds the terms corresponding to a factor appearing in an interaction but nowhere else..
              othmc[alone] <- -othmc[alone]
            }
            if(any(dupfct)) { # reordering if dupfct... putting it in front..
              slopes[-lim] <- c(slopes[-lim][dupfct], slopes[-lim][-dupfct])
              othmc <- c(bsum(othmc[dupfct]), othmc[-dupfct])
            }
            slflag <- c(slflag, othmc)
          }
          # this shows single factors not interacted... set slflag to negative...
          # what about double interactions only with slope ??? i.e. only imp:exp:year -> also negative flag...

        } else { # No double factor interactions with slopes.. Only simple slopes interactions.. (what about dupfact of two different double interactions with slope, but no factfact?)
          dupchk <- factors > 0L # same as intslopes...
          if(any(dupfct <- frowSums(dupchk) > 1)) { # Check for factors with multiple slopes...
            if(bsum(dupfct) > 1L) stop("Cannot currently support multiple factors with multiple slopes...")
            dupfct <- which(dupchk[dupfct, ])
            fctdat <- c(fctdat, lapply(c(intslope[dupfct[1L]], intslope[-dupfct]), finteract, facts, mf))
          } else fctdat <- c(fctdat, lapply(intslope, finteract, facts, mf))
          slopes <- lapply(intslope, slinteract, facts, mf) # getting slopes, independent of dupfct...
          lsl <- lengths(slopes, FALSE)
          if(any(alone <- single & !nointeract)) { # Any factor occurring only inside an interaction... This is independent of dupfact and thre associated reordering...
            alone <- fcolSums(factors[alone, , drop = FALSE]) > 0
            lsl[alone] <- -lsl[alone]
          }
          if(any(dupfct)) { # reordering if dupfct... putting it in front..
            slopes <- c(slopes[dupfct], slopes[-dupfct])
            lsl <- c(bsum(lsl[dupfct]), lsl[-dupfct])
          }
          slflag <- c(slflag, integer(lff), lsl)
        }
        attr(fctdat, "slope.vars") <- unlist(slopes, recursive = FALSE) # , FALSE, FALSE)
        attr(fctdat, "slope.flag") <- slflag  # c(integer(length(fctdat)-length(intslope)), lengths(slopes)) # what about other slopes (not poly??)
      }
      # drop unused factor levels ??
    } else {
      modelterms <- tl[!fctterms]
      fctdat <- mf[facts]
    }
    slflag <- attr(fctdat, "slope.flag")
    if(length(modelterms)) { # Intercept only needed if facts with only negative slope flag...
      form <- paste0(if(is.null(slflag) || any(slflag > 0L)) "~ -1 + " else "~ ", paste(modelterms, collapse = " + "))
      moddat <- model.matrix.default(as.formula(form), data = `oldClass<-`(mf, clmf))
    } else {
      moddat <- if(is.null(slflag) || any(slflag > 0L)) NULL else
                alloc(1, length(mf[[1L]]))
    }
  } else {
    fctdat <- NULL
    moddat <- model.matrix.default(attr(mf, "terms"), data = mf) # .External2(stats:::C_modelmatrix, attr(mf, "terms"), mf)
  }
  list(fl = fctdat, xmat = moddat)
}

# Keeps attributes ? -> Yes !
# fastest way ? or better use vectors ? -> this is faster than lapply(fl, `[`, cc) !
subsetfl <- function(fl, cc) {
  slopes <- attr(fl, "slope.vars") # fl could be a data.frame, slope vars not (getfl() unclasses)
  if(is.null(names(fl))) names(fl) <- seq_along(unclass(fl))
  if(is.null(slopes)) return(.Call(C_subsetDT, fl, cc, seq_along(unclass(fl)), FALSE))
  attr(fl, "slope.vars") <- NULL
  if(is.null(names(slopes))) names(slopes) <- seq_along(slopes)
  res <- .Call(C_subsetDT, fl, cc, seq_along(fl), FALSE)
  attr(res, "slope.vars") <- .Call(C_subsetDT, slopes, cc, seq_along(slopes), FALSE) # fdroplevels ??
  res
}

# Old version:
# subsetfl <- function(fl, cc) {
#   lapply(fl, function(f) { # use CsubsetDT or CsubsetVector ?? also check NA in regressors ??
#     x <- attr(f, "x")
#     if(is.null(x)) return(.Call(C_subsetVector, f, cc, FALSE)) else
#       return(`attr<-`(.Call(C_subsetVector, f, cc, FALSE), "x",
#                       if(is.matrix(x)) x[cc, , drop = FALSE] else
#                         .Call(C_subsetVector, x, cc, FALSE)))
#   })
# }

# Examples:
# str(getfl(myModFrame( ~ cyl + carb, data = mtcars)))
# str(getfl(myModFrame( ~ factor(cyl)*carb, data = mtcars)))
# str(getfl(myModFrame( ~ factor(cyl) + factor(am), data = mtcars)))
# str(getfl(myModFrame( ~ factor(cyl):factor(am), data = mtcars)))
# str(getfl(myModFrame( ~ mpg + factor(cyl)*carb, data = mtcars)))
# str(getfl(myModFrame( ~ mpg + factor(cyl) + factor(am), data = mtcars)))
# str(getfl(myModFrame( ~ mpg + factor(cyl):factor(am), data = mtcars)))
# str(getfl(myModFrame( ~ mpg + factor(cyl):factor(am):vs, data = mtcars))) # wow !!
# str(getfl(myModFrame( ~ mpg + factor(cyl):factor(am)*vs, data = mtcars))) # wow !!
# str(getfl(myModFrame( ~ mpg + factor(cyl):factor(am) + factor(cyl):factor(am):vs, data = mtcars))) # wow !!
# str(getfl(myModFrame( ~ mpg + factor(cyl):mpg + factor(am):mpg + factor(cyl):factor(am), data = mtcars)))
# str(getfl(model.frame( ~ factor(cyl)*carb + vs + wt:gear + wt:gear:carb, data = mtcars)))

# (Weighted) linear model fitting for vectors and lists...

# Neded to sort out some insufficiencies of base R default functions when dealing with dimensions
`%**%` <- function(x, y) if(length(y) > 1L) x %*% y else x * y
tcrossprod2 <- function(x, y) if(length(x) > 1L) tcrossprod(x, y) else `dim<-`(x * y, c(1L, length(y)))

# y = x; X = xmat; w = w; meth = lm.method
flmres <- function(y, X, w = NULL, meth = "qr", resi = TRUE, ...) {
  # n <- dim(X)[1L]
  # if(n != NROW(y)) stop("NROW(y) must match nrow(X)")
  dimnames(X) <- NULL # faster ??
  if(length(w)) {
    # if(length(w) != n) stop("w must be numeric and length(w) == nrow(X)")
    wts <- sqrt(w)
    if(is.atomic(y)) {
      dimnames(y) <- NULL
      return(drop(switch(meth,
                         qr = {
                           fit <- X %**% qr.coef(qr(X * wts, ...), y * wts) # same as lm...
                           if(resi) y - fit else fit
                         },
                         chol = {
                           fit <- X * wts
                           fit <- X %*% chol2inv(chol(crossprod(fit), ...)) %*% crossprod(fit, y * wts)
                           if(resi) y - fit else fit
                         },
                         stop("Only methods 'qr' and 'chol' are supported"))))
    }
    attributes(y) <- NULL
      return(switch(meth,
                     qr = {
                       calc <- qr(X * wts, ...)
                       if(resi) lapply(y, function(z) drop(z - X %**% qr.coef(calc, z * wts))) else
                                lapply(y, function(z) drop(X %**% qr.coef(calc, z * wts)))
                     },
                     chol = {
                       calc <- X * wts
                       calc <- X %*% tcrossprod2(chol2inv(chol(crossprod(calc), ...)), calc)
                       if(resi) lapply(y, function(z) drop(z - calc %*% (z * wts))) else
                                lapply(y, function(z) drop(calc %*% (z * wts)))
                     },
                     stop("Only methods 'qr' and 'chol' are supported")))
  }
  if(is.atomic(y)) {
    dimnames(y) <- NULL
    return(drop(switch(meth,
           qr = if(resi) qr.resid(qr(X, ...), y) else qr.fitted(qr(X, ...), y),
           chol = {
            fit <- X %*% chol2inv(chol(crossprod(X), ...)) %*% crossprod(X, y)
            if(resi) y - fit else fit
           },
           stop("Only methods 'qr' and 'chol' are supported"))))
  }
  attributes(y) <- NULL
  return(switch(meth,
                qr = {
                  calc <- qr(X, ...)
                  if(resi) lapply(y, function(z) drop(qr.resid(calc, z))) else
                           lapply(y, function(z) drop(qr.fitted(calc, z)))
                },
                chol = {
                  calc <- X %*% tcrossprod2(chol2inv(chol(crossprod(X), ...)), X)
                  if(resi) lapply(y, function(z) drop(z - calc %*% z)) else
                           lapply(y, function(z) drop(calc %*% z))
                },
                stop("Only methods 'qr' and 'chol' are supported")))
}




fhdwithin <- function(x, ...) UseMethod("fhdwithin") # , x

fhdwithin.default <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...) {
  # if(is.matrix(x) && !inherits(x, "matrix")) return(fhdwithin.matrix(x, fl, w, na.rm, fill, ...))
  ax <- attributes(x)
  if(na.rm) {
    cc <- complete.cases(x, fl, w) # gives error if lengths don't match, otherwise demeanlist and qr.resid give errors !!
    if(!all(cc)) {
      ax[["na.rm"]] <- whichv(cc, FALSE)
      cc <- which(cc)
      w <- w[cc] # Note this here !!
      if(!fill) {
        if(length(names(x))) ax[["names"]] <- Csv(names(x), cc) # best ??
        x <- Csv(x, cc)
      }
    } else na.rm <- FALSE
  }

  if(is.list(fl)) {
    fc <- .Call(C_vtypes, fl, 2L) # vapply(unattrib(fl), is.factor, TRUE)
    fcl <- any(fc)
    # if(!fcl && !missing(...)) unused_arg_action(match.call(), ...)
    nallfc <- fcl && !all(fc)
    if(na.rm) fl <- subsetfl(fl, cc)
    attributes(fl) <- NULL # good here ??
    if(nallfc) {
      xmat <- demean(do.call(cbind, fl[!fc]), fl[fc], w, ...)
      fl <- fl[fc]
    } else if(!fcl) xmat <- do.call(cbind, c(list(alloc(1L, length(fl[[1L]]))), fl))
  } else if(is.matrix(fl)) {
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl[cc, , drop = FALSE]) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  } else if(is.factor(fl)) {
    fl <- if(na.rm) list(Csv(fl, cc)) else list(fl)
    fcl <- TRUE
    nallfc <- FALSE
  } else {
    if(!is.numeric(fl)) stop("fl must be a list of vectors / factors, a numeric matrix or a numeric vector")
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl = Csv(fl, cc)) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  }

  if(nallfc || !fcl) {
    if(na.rm && fill) {
      x[-cc] <- NA
      x[cc] <- flmres(if(nallfc) demean(Csv(x, cc), fl, w, ...) else Csv(x, cc), xmat, w, lm.method, ...)
      return(setAttributes(x, ax))
    } else return(setAttributes(flmres(if(nallfc) demean(x, fl, w, ...) else x, xmat, w, lm.method, ...), ax))
  } else if(na.rm && fill) {
    x[-cc] <- NA
    x[cc] <- demean(Csv(x, cc), fl, w, ...)
    return(setAttributes(x, ax))
  } else return(setAttributes(demean(x, fl, w, ...), ax))
}
fhdwithin.pseries <- function(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, ...) {
  if(is.matrix(x)) stop("higher-dimensional centering of matrix pseries is currently not supported. You can use fhdwithin.matrix(x, ix(x), fill = TRUE)")
  ix <- findex(x)
  namix <- attr(ix, "names")
  if(is.character(effect) && length(effect) == 1L && effect == "all") {
    effect <- seq_along(namix)
  } else effect <- cols2int(effect, ix, namix)
  g <- .subset(ix, effect)

  if(na.rm && length(cc <- whichv(x, NA, TRUE)) != length(x)) {
     g <- .Call(C_subsetDT, g, cc, seq_along(g), FALSE) # lapply(g, `[`, cc) -> slower !
    if(fill) {
      x[cc] <- demean(Csv(unattrib(x), cc), g, w[cc], ...) # keeps attributes ?? -> Yes !!
      return(x)
    }
    ax <- attributes(x)
    attributes(x) <- NULL
    xcc <- Csv(x, cc)
    nix <- length(unclass(ix))
    if(nix != length(g)) {
      toss <- seq_len(nix)[-effect]
      reix <- copyMostAttributes(c(.Call(C_subsetDT, ix, cc, toss, FALSE), g)[namix], ix)
    } else reix <- copyMostAttributes(g, ix)
    attr(reix, "row.names") <- .set_row_names(length(cc))
    ax[[if(any(ax$class == "indexed_series")) "index_df" else "index"]] <- reix
    ax$na.rm <- seq_along(x)[-cc]
    if(length(ax$names)) ax$names <- Csv(ax$names, cc)
    res <- setAttributes(demean(xcc, g, w[cc], ...), ax)
  } else res <- demean(x, g, w, ...) # keeps attributes ?? -> Yes !!
  if(is.double(x)) return(res)
  pseries_to_numeric(res)
}

# x = mNA; fl = m; lm.method = "qr"
fhdwithin.matrix <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...) {
  ax <- attributes(x)
  if(na.rm) {
    cc <- complete.cases(x, fl, w) # gives error if lengths don't match, otherwise demeanlist and qr.resid give errors !!
    if(!all(cc)) {
      ax[["na.rm"]] <- whichv(cc, FALSE)
      cc <- which(cc)
      w <- w[cc]
      if(!fill) {
        if(length(dimnames(x)[[1L]])) ax[["dimnames"]][[1L]] <- Csv(dimnames(x)[[1L]], cc) # best ??
        ax[["dim"]][1L] <- length(cc)
        x <- x[cc, , drop = FALSE]
      }
    } else na.rm <- FALSE
  }

  if(is.list(fl)) {
    fc <- .Call(C_vtypes, fl, 2L) # vapply(unattrib(fl), is.factor, TRUE)
    fcl <- any(fc)
    # if(!fcl && !missing(...)) unused_arg_action(match.call(), ...)
    nallfc <- fcl && !all(fc)
    if(na.rm) fl <- subsetfl(fl, cc)
    attributes(fl) <- NULL # good here ??
    if(nallfc) {
      xmat <- demean(do.call(cbind, fl[!fc]), fl[fc], w, ...)
      fl <- fl[fc]
    } else if(!fcl) xmat <- do.call(cbind, c(list(alloc(1L, length(fl[[1L]]))), fl))
  } else if(is.matrix(fl)) {
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl[cc, , drop = FALSE]) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  } else if(is.factor(fl)) {
    fl <- if(na.rm) list(Csv(fl, cc)) else list(fl)
    fcl <- TRUE
    nallfc <- FALSE
  } else {
    if(!is.numeric(fl)) stop("fl must be a list of vectors / factors, a numeric matrix or a numeric vector")
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl = Csv(fl, cc)) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  }

  if(nallfc || !fcl) {
    if(na.rm && fill) {
      x[-cc, ] <- NA # What about weights cc ?????
      x[cc, ] <- flmres(if(nallfc) demean(x[cc, ], fl, w, ...) else x[cc, ], xmat, w, lm.method, ...)
      return(setAttributes(x, ax))
    } else return(setAttributes(flmres(if(nallfc) demean(x, fl, w, ...) else x, xmat, w, lm.method, ...), ax))
  } else if(na.rm && fill) {
    x[-cc, ] <- NA
    x[cc, ] <- demean(x[cc, ], fl, w, ...)
    return(setAttributes(x, ax))
  } else return(setAttributes(demean(x, fl, w, ...), ax))
}

fhdwithin.zoo <- function(x, ...) if(is.matrix(x)) fhdwithin.matrix(x, ...) else fhdwithin.default(x, ...)
fhdwithin.units <- fhdwithin.zoo

# x = collapse:::colsubset(pwlddev, is.numeric)
fhdwithin.pdata.frame <- function(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, variable.wise = TRUE, ...) {
  ix <- findex(x)
  namix <- attr(ix, "names")
  if(is.character(effect) && length(effect) == 1L && effect == "all") {
    effect <- seq_along(namix)
  } else effect <- cols2int(effect, ix, namix)
  g <- .subset(ix, effect)

  if(na.rm && fill && variable.wise) {
    ax <- attributes(x)
    attributes(x) <- NULL
    varwisecomp <- function(x, fl, w, ...) lapply(x, function(y) {
      ycc <- whichv(y, NA, TRUE)
      y[ycc] <- demean(Csv(unattrib(y), ycc), subsetfl(fl, ycc), w[ycc], ...)
      return(y)
    })
    return(setAttributes(varwisecomp(x, g, w, ...), ax))
  } else if(na.rm && any(miss <- missDF(x))) {
    cc <- whichv(miss, FALSE)
    gcc <- .Call(C_subsetDT, g, cc, seq_along(g), FALSE)
    Y <- demean(.Call(C_subsetDT, x, cc, seq_along(unclass(x)), FALSE), gcc, w[cc], ...)
    if(fill) {
      ax <- attributes(x)
      ax[["na.rm"]] <- which(miss)
      return(setAttributes(.Call(C_lassign, Y, fnrow(x), cc, NA_real_), ax))
    }
    attr(Y, "row.names") <- attr(x, "row.names")[cc] # row.names of pdata.frame are special.
    nix <- length(unclass(ix))
    if(nix != length(g)) {
      toss <- seq_len(nix)[-effect]
      reix <- copyMostAttributes(c(.Call(C_subsetDT, ix, cc, toss, FALSE), gcc)[namix], ix)
    } else reix <- copyMostAttributes(gcc, ix)
    attr(reix, "row.names") <- .set_row_names(length(cc))
    attr(Y, if(inherits(x, "indexed_frame")) "index_df" else "index") <- reix
    attr(Y, "na.rm") <- which(miss)
    return(Y)
  } else return(demean(x, g, w, ...)) # setAttributes(, ax) -> Not needed anymore (included in demean())
}

# x = data[5:6]; fl = data[-(5:6)]; variable.wise = TRUE
fhdwithin.data.frame <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, variable.wise = FALSE, lm.method = "qr", ...) {
  ax <- attributes(x)

  if(na.rm) {
    cc <- if(variable.wise) complete.cases(fl, w) else complete.cases(x, fl, w) # gives error if lengths don't match, otherwise demeanlist and qr.resid give errors !!
    if(!all(cc)) {
      ax[["na.rm"]] <- whichv(cc, FALSE)
      cc <- which(cc)
      w <- w[cc]
      if(!variable.wise) {
        if(fill) nrx <- fnrow(x) else if(is.character(ax[["row.names"]]))
          ax[["row.names"]] <- ax[["row.names"]][cc] else ax[["row.names"]] <- .set_row_names(length(cc)) # best ??
        x <- .Call(C_subsetDT, x, cc, seq_along(unclass(x)), FALSE)
      }
    } else na.rm <- FALSE
  }

  if(is.list(fl)) { # fl is a list !!
    fc <- .Call(C_vtypes, fl, 2L) # vapply(unattrib(fl), is.factor, TRUE)
    fcl <- any(fc)
    # if(!fcl && !missing(...)) unused_arg_action(match.call(), ...)
    nallfc <- fcl && !all(fc)
    if(na.rm) fl <- subsetfl(fl, cc)
    attributes(fl) <- NULL # good here ??
    if(nallfc) {
      xmat <- demean(do.call(cbind, fl[!fc]), fl[fc], w, ...)
      fl <- fl[fc]
    } else if(!fcl) xmat <- do.call(cbind, c(list(alloc(1L, length(fl[[1L]]))), fl))
  } else if(is.matrix(fl)) {
      # if(!missing(...)) unused_arg_action(match.call(), ...)
      xmat <- if(na.rm) cbind(Intercept = 1L, fl[cc, , drop = FALSE]) else cbind(Intercept = 1L, fl)
      nallfc <- fcl <- FALSE
  } else if(is.factor(fl)) {
    fl <- if(na.rm) list(Csv(fl, cc)) else list(fl)
    fcl <- TRUE
    nallfc <- FALSE
  } else {
    if(!is.numeric(fl)) stop("fl must be a list of vectors / factors, a numeric matrix or a numeric vector")
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl = Csv(fl, cc)) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  }

  if(variable.wise) {
    if(na.rm) { # this means there were mising values in fl, which were already removed!
      return(setAttributes(lapply(unattrib(x), function(y) {
        y[-cc] <- NA # which is not faster !!
        ycc <- whichv(y, NA, TRUE)
        y_cc <- Csv(y, cc)
        YC <- whichv(y_cc, NA, TRUE)
        y_cc <- Csv(y_cc, YC)
        wc <- w[YC]
        y[ycc] <- if(nallfc) flmres(demean(y_cc, subsetfl(fl, YC), wc, ...), xmat[YC, , drop = FALSE], wc, lm.method, ...) else if(fcl)
          demean(y_cc, subsetfl(fl, YC), wc, ...) else flmres(y_cc, xmat[YC, , drop = FALSE], wc, lm.method, ...)
        return(y)
      }), ax))
    }
    return(setAttributes(lapply(unattrib(x), function(y) {
      ycc <- whichv(y, NA, TRUE)
      y_cc <- Csv(y, ycc)
      wc <- w[ycc]
      y[ycc] <- if(nallfc) flmres(demean(y_cc, subsetfl(fl, ycc), wc, ...), xmat[ycc, , drop = FALSE], wc, lm.method, ...) else if(fcl)
        demean(y_cc, subsetfl(fl, ycc), wc, ...) else flmres(y_cc, xmat[ycc, , drop = FALSE], wc, lm.method, ...)
      return(y)
    }), ax)) # Rfast fastlm??
  } else { # at this point missing values are already removed from x and fl !!
    Y <- if(nallfc || !fcl) flmres(if(nallfc) demean(x, fl, w, ...) else x, xmat, w, lm.method, ...) else demean(x, fl, w, ...)
    if(na.rm && fill)  # x[cc, ] <- Y; x[-cc, ] <- NA
      return(setAttributes(.Call(C_lassign, Y, nrx, cc, NA_real_), ax))
    return(setAttributes(Y, ax))
  }
}

fhdwithin.list <- function(x, ...) fhdwithin.data.frame(x, ...)


# Note: could also do Mudlack and add means to second regression -> better than two-times centering ??
HDW <- function(x, ...) UseMethod("HDW") # , x

HDW.default <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...) {
  # if(is.matrix(x) && !inherits(x, "matrix")) return(HDW.matrix(x, fl, w, na.rm, fill, lm.method, ...))
  fhdwithin.default(x, fl, w, na.rm, fill, lm.method, ...)
}

HDW.pseries <- function(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, ...)
  fhdwithin.pseries(x, effect, w, na.rm, fill, ...)

HDW.matrix <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, stub = .op[["stub"]], lm.method = "qr", ...) {
  res <- fhdwithin.matrix(x, fl, w, na.rm, fill, lm.method, ...)
  if(isTRUE(stub) || is.character(stub)) return(add_stub(res, if(is.character(stub)) stub else "HDW."))
  res
}

HDW.zoo <- function(x, ...) if(is.matrix(x)) HDW.matrix(x, ...) else HDW.default(x, ...)
HDW.units <- HDW.zoo

# x = mtcars; fl = ~ qF(cyl):carb; w = wdat; stub = FALSE
HDW.data.frame <- function(x, fl, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]], fill = FALSE,
                           variable.wise = FALSE, stub = .op[["stub"]], lm.method = "qr", ...) {
  if(is.call(fl)) {
    ax <- attributes(x)
    nam <- ax[["names"]]
    if(length(fl) == 3L) {
      fvars <- ckmatch(all.vars(fl[[3L]]), nam)
      Xvars <- ckmatch(all.vars(fl[[2L]]), nam)
      fl[[2L]] <- NULL
    } else {
      fvars <- ckmatch(all.vars(fl), nam)
      Xvars <- cols2intrmgn(fvars, cols, x) # if(length(cols)) fsetdiff(cols2int(cols, x, nam), fvars) else seq_along(unclass(x))[-fvars]
    }
    ax[["names"]] <- do_stub(stub, nam[Xvars], "HDW.")

    if(na.rm) {
      miss <- missDF(x, if(variable.wise) fvars else c(Xvars, fvars))
      if(missw <- length(w) && anyNA(w)) miss <- miss | is.na(w)
      if(missw || any(miss)) {
        ax[["na.rm"]] <- which(miss)
        cc <- whichv(miss, FALSE)
        w <- w[cc]
        if(!variable.wise) if(fill) nrx <- fnrow(x) else if(is.character(ax[["row.names"]]))
          ax[["row.names"]] <- ax[["row.names"]][cc] else ax[["row.names"]] <- .set_row_names(length(cc)) # best ??
      } else na.rm <- FALSE
    }

    xmat <- NULL
    list2env(getfl(myModFrame(fl, if(na.rm) .Call(C_subsetDT, x, cc, fvars, FALSE) else .subset(x, fvars))), envir = environment())
    fcl <- !is.null(fl)
    nallfc <- fcl && !is.null(xmat)
    if(nallfc) xmat <- demean(xmat, fl, w, ...)

    if(variable.wise) {
      if(na.rm) {
        return(setAttributes(lapply(.subset(x, Xvars), function(y) {
          y[-cc] <- NA
          ycc <- whichv(y, NA, TRUE)
          y_cc <- Csv(y, cc)
          YC <- whichv(y_cc, NA, TRUE)
          y_cc <- Csv(y_cc, YC)
          wc <- w[YC]
          y[ycc] <- if(nallfc) flmres(demean(y_cc, subsetfl(fl, YC), wc, ...), xmat[YC, , drop = FALSE], wc, lm.method, ...) else if(fcl)
            demean(y_cc, subsetfl(fl, YC), wc, ...) else  flmres(y_cc, xmat[YC, , drop = FALSE], wc, lm.method, ...)
          return(y)
        }), ax))
      }
      return(setAttributes(lapply(.subset(x, Xvars), function(y) {
        ycc <- whichv(y, NA, TRUE)
        y_cc <- Csv(y, ycc)
        wc <- w[ycc]
        y[ycc] <- if(nallfc) flmres(demean(y_cc, subsetfl(fl, ycc), wc, ...), xmat[ycc, , drop = FALSE], wc, lm.method, ...) else if(fcl)
          demean(y_cc, subsetfl(fl, ycc), wc, ...) else flmres(y_cc, xmat[ycc, , drop = FALSE], wc, lm.method, ...)
        return(y)
      }), ax))
    } else { # at this point missing values are already removed from  fl !!
      Y <- if(na.rm) .Call(C_subsetDT, x, cc, Xvars, FALSE) else .subset(x, Xvars)
      Y <- if(nallfc || !fcl) flmres(if(nallfc) demean(Y, fl, w, ...) else Y, xmat, w, lm.method, ...) else demean(Y, fl, w, ...)
      if(na.rm && fill)  # x[cc, ] <- Y; x[-cc, ] <- NA
        return(setAttributes(.Call(C_lassign, Y, nrx, cc, NA_real_), ax))
      return(setAttributes(Y, ax))
    }
  }  # fl is not a formula !!
 res <- fhdwithin.data.frame(if(is.null(cols)) x else colsubset(x, cols), fl, w, na.rm, fill, variable.wise, lm.method, ...)
 if(isTRUE(stub) || is.character(stub)) return(add_stub(res, if(is.character(stub)) stub else "HDW."))
 res
}

HDW.pdata.frame <- function(x, effect = "all", w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]], fill = TRUE,
                            variable.wise = TRUE, stub = .op[["stub"]], ...) {
  res <- fhdwithin.pdata.frame(fcolsubset(x, cols2intrmgn(which(attr(x, "names") %in% attr(findex(x), "nam")), cols, x)), effect, w, na.rm, fill, variable.wise, ...)
  if(isTRUE(stub) || is.character(stub)) return(add_stub(res, if(is.character(stub)) stub else "HDW."))
  res
}

HDW.list <- function(x, ...) HDW.data.frame(x, ...)

# Theory: y = ?1 x1 + ?2 x2 + e
# FWT: M2 y = ?1 M2 x1 + e so residuals: e = M2 y - ?1 M2 x1 and fitted:
# Now M = I - x(x'x)-1x' = I - P.
# So (I-P2) y = ?1 (I-P2) x1 + e or y - P2 y = ?1 x1 - ?1 P2 x1 + e

# I want y - e = y^ = ?1 x1 + ?2 x2
# so
# P2 y = ?1 P2 x1 + ?2 x2
# Haven't quite figgured it out, but my solution is to just subtract the demeaned data !!

# Note: Only changes to fhdwithin is in the computation part: Perhaps you can combine the code in some better way to reduce code duplication ??


fhdbetween <- function(x, ...) UseMethod("fhdbetween") # , x


fhdbetween.default <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...) {
  # if(is.matrix(x) && !inherits(x, "matrix")) return(fhdwithin.matrix(x, fl, w, na.rm, fill, lm.method, ...))
  ax <- attributes(x)
  if(na.rm) {
    cc <- complete.cases(x, fl, w) # gives error if lengths don't match, otherwise demeanlist and qr.resid give errors !!
    if(!all(cc)) {
      ax[["na.rm"]] <- whichv(cc, FALSE)
      cc <- which(cc)
      w <- w[cc] # Note this here !!
      if(!fill) {
        if(length(names(x))) ax[["names"]] <- Csv(names(x), cc) # best ??
        x <- Csv(x, cc)
      }
    } else na.rm <- FALSE
  }

  if(is.list(fl)) {
    fc <- .Call(C_vtypes, fl, 2L) # vapply(unattrib(fl), is.factor, TRUE)
    fcl <- any(fc)
    # if(!fcl && !missing(...)) unused_arg_action(match.call(), ...)
    nallfc <- fcl && !all(fc)
    if(na.rm) fl <- subsetfl(fl, cc)
    attributes(fl) <- NULL # good here ??
    if(nallfc) {
      xmat <- demean(do.call(cbind, fl[!fc]), fl[fc], w, ...)
      fl <- fl[fc]
    } else if(!fcl) xmat <- do.call(cbind, c(list(alloc(1L, length(fl[[1L]]))), fl))
  } else if(is.matrix(fl)) {
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl[cc, , drop = FALSE]) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  } else if(is.factor(fl)) {
    fl <- if(na.rm) list(Csv(fl, cc)) else list(fl)
    fcl <- TRUE
    nallfc <- FALSE
  } else {
    if(!is.numeric(fl)) stop("fl must be a list of vectors / factors, a numeric matrix or a numeric vector")
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl = Csv(fl, cc)) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  }
  # Only this part of the code is different from fhdwithin...
  if(nallfc || !fcl) {
    if(na.rm && fill) {
      x[-cc] <- NA
      xcc <- Csv(x, cc)
      x[cc] <- if(nallfc) xcc - flmres(demean(xcc, fl, w, ...), xmat, w, lm.method, ...) else
        flmres(xcc, xmat, w, lm.method, FALSE, ...)
      return(setAttributes(x, ax))
    } else return(setAttributes(if(nallfc)
      x - flmres(demean(x, fl, w, ...), xmat, w, lm.method, ...) else
        flmres(x, xmat, w, lm.method, FALSE, ...), ax))
  } else if(na.rm && fill) {
    x[-cc] <- NA
    x[cc] <- demean(Csv(x, cc), fl, w, ..., means = TRUE)
    return(setAttributes(x, ax))
  } else return(setAttributes(demean(x, fl, w, ..., means = TRUE), ax))
}


fhdbetween.pseries <- function(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, ...)
  fhdwithin.pseries(x, effect, w, na.rm, fill, ..., means = TRUE)

fhdbetween.matrix <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...) {
  ax <- attributes(x)
  if(na.rm) {
    cc <- complete.cases(x, fl, w) # gives error if lengths don't match, otherwise demeanlist and qr.resid give errors !!
    if(!all(cc)) {
      ax[["na.rm"]] <- whichv(cc, FALSE)
      cc <- which(cc)
      w <- w[cc]
      if(!fill) {
        if(length(dimnames(x)[[1L]])) ax[["dimnames"]][[1L]] <- dimnames(x)[[1L]][cc] # best ??
        ax[["dim"]][1L] <- length(cc)
        x <- x[cc, , drop = FALSE]
      }
    } else na.rm <- FALSE
  }

  if(is.list(fl)) {
    fc <- .Call(C_vtypes, fl, 2L) # vapply(unattrib(fl), is.factor, TRUE)
    fcl <- any(fc)
    # if(!fcl && !missing(...)) unused_arg_action(match.call(), ...)
    nallfc <- fcl && !all(fc)
    if(na.rm) fl <- subsetfl(fl, cc)
    attributes(fl) <- NULL # good here ??
    if(nallfc) {
      xmat <- demean(do.call(cbind, fl[!fc]), fl[fc], w, ...)
      fl <- fl[fc]
    } else if(!fcl) xmat <- do.call(cbind, c(list(alloc(1L, length(fl[[1L]]))), fl))
  } else if(is.matrix(fl)) {
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl[cc, , drop = FALSE]) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  } else if(is.factor(fl)) {
    fl <- if(na.rm) list(Csv(fl, cc)) else list(fl)
    fcl <- TRUE
    nallfc <- FALSE
  } else {
    if(!is.numeric(fl)) stop("fl must be a list of vectors / factors, a numeric matrix or a numeric vector")
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl = Csv(fl, cc)) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  }
  # Only this part of the code is different from fhdwithin...
  if(nallfc || !fcl) {
    if(na.rm && fill) {
      x[-cc, ] <- NA
      xcc <- x[cc, ] # What about weights cc ? -> done above...
      x[cc, ] <- if(nallfc) xcc - flmres(demean(xcc, fl, w, ...), xmat, w, lm.method, ...) else
        flmres(xcc, xmat, w, lm.method, FALSE, ...)
      return(setAttributes(x, ax))
    } else return(setAttributes(if(nallfc)
      x - flmres(demean(x, fl, w, ...), xmat, w, lm.method, ...) else
        flmres(x, xmat, w, lm.method, FALSE, ...), ax))
  } else if(na.rm && fill) {
    x[-cc, ] <- NA
    x[cc, ] <- demean(x[cc, ], fl, w, ..., means = TRUE)
    return(setAttributes(x, ax))
  } else return(setAttributes(demean(x, fl, w, ..., means = TRUE), ax))
}

fhdbetween.zoo <- function(x, ...) if(is.matrix(x)) fhdbetween.matrix(x, ...) else fhdbetween.default(x, ...)
fhdbetween.units <- fhdbetween.zoo

fhdbetween.pdata.frame <- function(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, variable.wise = TRUE, ...)
  fhdwithin.pdata.frame(x, effect, w, na.rm, fill, variable.wise, ..., means = TRUE)


fhdbetween.data.frame <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, variable.wise = FALSE, lm.method = "qr", ...) {
  ax <- attributes(x)

  if(na.rm) {
    cc <- if(variable.wise) complete.cases(fl, w) else complete.cases(x, fl, w) # gives error if lengths don't match, otherwise demeanlist and qr.resid give errors !!
    if(!all(cc)) {
      ax[["na.rm"]] <- whichv(cc, FALSE)
      cc <- which(cc)
      w <- w[cc]
      if(!variable.wise) {
        if(fill) nrx <- fnrow(x) else if(is.character(ax[["row.names"]]))
          ax[["row.names"]] <- ax[["row.names"]][cc] else ax[["row.names"]] <- .set_row_names(length(cc)) # best ??
        x <- .Call(C_subsetDT, x, cc, seq_along(unclass(x)), FALSE)
      }
    } else na.rm <- FALSE
  }

  if(is.list(fl)) { # fl is a list !!
    fc <- .Call(C_vtypes, fl, 2L) # vapply(unattrib(fl), is.factor, TRUE)
    fcl <- any(fc)
    # if(!fcl && !missing(...)) unused_arg_action(match.call(), ...)
    nallfc <- fcl && !all(fc)
    if(na.rm) fl <- subsetfl(fl, cc)
    attributes(fl) <- NULL # good here ??
    if(nallfc) {
      xmat <- demean(do.call(cbind, fl[!fc]), fl[fc], w, ...)
      fl <- fl[fc]
    } else if(!fcl) xmat <- do.call(cbind, c(list(alloc(1L, length(fl[[1L]]))), fl))
  } else if(is.matrix(fl)) {
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl[cc, , drop = FALSE]) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  } else if(is.factor(fl)) {
    fl <- if(na.rm) list(Csv(fl, cc)) else list(fl)
    fcl <- TRUE
    nallfc <- FALSE
  } else {
    if(!is.numeric(fl)) stop("fl must be a list of vectors / factors, a numeric matrix or a numeric vector")
    # if(!missing(...)) unused_arg_action(match.call(), ...)
    xmat <- if(na.rm) cbind(Intercept = 1L, fl = Csv(fl, cc)) else cbind(Intercept = 1L, fl)
    nallfc <- fcl <- FALSE
  }
  # Only this part of the code is different from fhdwithin !!
  if(variable.wise) {
    if(na.rm) { # this means there were mising values in fl, which were already removed!
      return(setAttributes(lapply(unattrib(x), function(y) {
        y[-cc] <- NA # which is not faster !!
        ycc <- whichv(y, NA, TRUE)
        y_cc <- Csv(y, cc)
        YC <- whichv(y_cc, NA, TRUE)
        y_cc <- Csv(y_cc, YC)
        wc <- w[YC]
        y[ycc] <- if(nallfc) y_cc %-=% flmres(demean(y_cc, subsetfl(fl, YC), wc, ...), xmat[YC, , drop = FALSE], wc, lm.method, ...) else if(fcl)
          demean(y_cc, subsetfl(fl, YC), wc, ..., means = TRUE) else flmres(y_cc, xmat[YC, , drop = FALSE], wc, lm.method, FALSE, ...)
        return(y)
      }), ax))
    }
    return(setAttributes(lapply(unattrib(x), function(y) {
      ycc <- whichv(y, NA, TRUE)
      y_cc <- Csv(y, ycc)
      wc <- w[ycc]
      y[ycc] <- if(nallfc) y_cc %-=% flmres(demean(y_cc, subsetfl(fl, ycc), wc, ...), xmat[ycc, , drop = FALSE], wc, lm.method, ...) else if(fcl)
        demean(y_cc, subsetfl(fl, ycc), wc, ..., means = TRUE) else flmres(y_cc, xmat[ycc, , drop = FALSE], wc, lm.method, FALSE, ...)
      return(y)
    }), ax)) # Rfast fastlm??
  } else { # at this point missing values are already removed from x and fl !!
    if(nallfc || !fcl) {
      Y <- if(nallfc) x %c-% flmres(demean(x, fl, w, ...), xmat, w, lm.method, ...) else flmres(x, xmat, w, lm.method, FALSE, ...)
    } else Y <- demean(x, fl, w, ..., means = TRUE)
    if(na.rm && fill)  # x[cc, ] <- Y; x[-cc, ] <- NA
      return(setAttributes(.Call(C_lassign, Y, nrx, cc, NA_real_), ax))
    return(setAttributes(Y, ax))
  }
}

fhdbetween.list <- function(x, ...) fhdbetween.data.frame(x, ...)


HDB <- function(x, ...) UseMethod("HDB") # , x

HDB.default <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...) {
  # if(is.matrix(x) && !inherits(x, "matrix")) return(HDB.matrix(x, fl, w, na.rm, fill, lm.method, ...))
  fhdbetween.default(x, fl, w, na.rm, fill, lm.method, ...)
}

HDB.pseries <- function(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, ...)
  fhdwithin.pseries(x, effect, w, na.rm, fill, ..., means = TRUE)


HDB.matrix <- function(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, stub = .op[["stub"]], lm.method = "qr", ...) {
  res <- fhdbetween.matrix(x, fl, w, na.rm, fill, lm.method, ...)
  if(isTRUE(stub) || is.character(stub)) return(add_stub(res, if(is.character(stub)) stub else "HDB."))
  res
}

HDB.zoo <- function(x, ...) if(is.matrix(x)) HDB.matrix(x, ...) else HDB.default(x, ...)
HDB.units <- HDB.zoo

HDB.data.frame <- function(x, fl, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]], fill = FALSE,
                           variable.wise = FALSE, stub = .op[["stub"]], lm.method = "qr", ...) {
  if(is.call(fl)) {
    ax <- attributes(x)
    nam <- ax[["names"]]
    if(length(fl) == 3L) {
      fvars <- ckmatch(all.vars(fl[[3L]]), nam)
      Xvars <- ckmatch(all.vars(fl[[2L]]), nam)
      fl[[2L]] <- NULL
    } else {
      fvars <- ckmatch(all.vars(fl), nam)
      Xvars <- cols2intrmgn(fvars, cols, x) #  if(length(cols)) fsetdiff(cols2int(cols, x, nam), fvars) else seq_along(unclass(x))[-fvars]
    }
    ax[["names"]] <- do_stub(stub, nam[Xvars], "HDB.")

    if(na.rm) {
      miss <- missDF(x, if(variable.wise) fvars else c(Xvars, fvars))
      if(missw <- length(w) && anyNA(w)) miss <- miss | is.na(w)
      if(missw || any(miss)) {
        ax[["na.rm"]] <- which(miss)
        cc <- whichv(miss, FALSE)
        w <- w[cc]
        if(!variable.wise) if(fill) nrx <- fnrow(x) else if(is.character(ax[["row.names"]]))
          ax[["row.names"]] <- ax[["row.names"]][cc] else ax[["row.names"]] <- .set_row_names(length(cc)) # best ??
      } else na.rm <- FALSE
    }

    xmat <- NULL
    list2env(getfl(myModFrame(fl, if(na.rm) .Call(C_subsetDT, x, cc, fvars, FALSE) else .subset(x, fvars))), envir = environment())
    fcl <- !is.null(fl)
    nallfc <- fcl && !is.null(xmat)
    if(nallfc) xmat <- demean(xmat, fl, w, ...)


    # Only this part of the code is different from fhdwithin !!
    if(variable.wise) {
      if(na.rm) { # this means there were mising values in fl, which were already removed!
        return(setAttributes(lapply(.subset(x, Xvars), function(y) {
          y[-cc] <- NA # which is not faster !!
          ycc <- whichv(y, NA, TRUE)
          y_cc <- Csv(y, cc)
          YC <- whichv(y_cc, NA, TRUE)
          y_cc <- Csv(y_cc, YC)
          wc <- w[YC]
          y[ycc] <- if(nallfc) y_cc %-=% flmres(demean(y_cc, subsetfl(fl, YC), wc, ...), xmat[YC, , drop = FALSE], wc, lm.method, ...) else if(fcl)
            demean(y_cc, subsetfl(fl, YC), wc, ..., means = TRUE) else flmres(y_cc, xmat[YC, , drop = FALSE], wc, lm.method, FALSE, ...)
          return(y)
        }), ax))
      }
      return(setAttributes(lapply(.subset(x, Xvars), function(y) {
        ycc <- whichv(y, NA, TRUE)
        y_cc <- Csv(y, ycc)
        wc <- w[ycc]
        y[ycc] <- if(nallfc) y_cc %-=% flmres(demean(y_cc, subsetfl(fl, ycc), wc, ...), xmat[ycc, , drop = FALSE], wc, lm.method, ...) else if(fcl)
          demean(y_cc, subsetfl(fl, ycc), wc, ..., means = TRUE) else flmres(y_cc, xmat[ycc, , drop = FALSE], wc, lm.method, FALSE, ...)
        return(y)
      }), ax))
    } else { # at this point missing values are already removed from  fl !!
      x <- if(na.rm) .Call(C_subsetDT, x, cc, Xvars, FALSE) else .subset(x, Xvars)
      if(nallfc || !fcl) {
        Y <- if(nallfc) x %c-% flmres(demean(x, fl, w, ...), xmat, w, lm.method, ...) else flmres(x, xmat, w, lm.method, FALSE, ...)
      } else Y <- demean(x, fl, w, ..., means = TRUE)
      if(na.rm && fill)  # x[cc, ] <- Y; x[-cc, ] <- NA
        return(setAttributes(.Call(C_lassign, Y, nrx, cc, NA_real_), ax))
      return(setAttributes(Y, ax))
    }
  }  # fl is not a formula !!
  res <- fhdbetween.data.frame(if(is.null(cols)) x else colsubset(x, cols), fl, w, na.rm, fill, variable.wise, lm.method, ...)
  if(isTRUE(stub) || is.character(stub)) return(add_stub(res, if(is.character(stub)) stub else "HDB."))
  res
}


HDB.pdata.frame <- function(x, effect = "all", w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]], fill = TRUE,
                            variable.wise = TRUE, stub = .op[["stub"]], ...) {
  res <- fhdwithin.pdata.frame(fcolsubset(x, cols2intrmgn(which(attr(x, "names") %in% attr(findex(x), "nam")), cols, x)), effect, w, na.rm, fill, variable.wise, ..., means = TRUE)
  if(isTRUE(stub) || is.character(stub)) return(add_stub(res, if(is.character(stub)) stub else "HDB."))
  res
}

HDB.list <- function(x, ...) HDB.data.frame(x, ...)

fHDbetween <- function(x, ...) {
  message("Note that 'fHDbetween' was renamed to 'fhdbetween'. The S3 generic will not be removed anytime soon, but please use updated function names in new code, see help('collapse-renamed')")
  UseMethod("fhdbetween")
}
fHDbetween.default <- function(x, ...) {
  if(is.matrix(x) && !inherits(x, "matrix")) return(fhdbetween.matrix(x, ...))
  # .Deprecated(msg = "This method belongs to a renamed function and will be removed end of 2022, see help('collapse-renamed')")
  fhdbetween.default(x, ...)
}
fHDbetween.matrix <- function(x, ...) {
  # .Deprecated(msg = "This method belongs to a renamed function and will be removed end of 2022, see help('collapse-renamed')")
  fhdbetween.matrix(x, ...)
}
fHDbetween.data.frame <- function(x, ...) {
  # .Deprecated(msg = "This method belongs to a renamed function and will be removed end of 2022, see help('collapse-renamed')")
  fhdbetween.data.frame(x, ...)
}


fHDwithin <- function(x, ...) {
  message("Note that 'fHDwithin' was renamed to 'fhdwithin'. The S3 generic will not be removed anytime soon, but please use updated function names in new code, see help('collapse-renamed')")
  UseMethod("fhdwithin")
}
fHDwithin.default <- function(x, ...) {
  if(is.matrix(x) && !inherits(x, "matrix")) return(fhdwithin.matrix(x, ...))
  # .Deprecated(msg = "This method belongs to a renamed function and will be removed end of 2022, see help('collapse-renamed')")
  fhdwithin.default(x, ...)
}
fHDwithin.matrix <- function(x, ...) {
  # .Deprecated(msg = "This method belongs to a renamed function and will be removed end of 2022, see help('collapse-renamed')")
  fhdwithin.matrix(x, ...)
}
fHDwithin.data.frame <- function(x, ...) {
  # .Deprecated(msg = "This method belongs to a renamed function and will be removed end of 2022, see help('collapse-renamed')")
  fhdwithin.data.frame(x, ...)
}


#
# HDW(x = mtcars, fl = ~ factor(cyl)*carb)
#
# HDW(x = mtcars, fl = ~ factor(cyl):vs)
#
# lm(mpg ~ factor(cyl):factor(vs), data = mtcars)
#
# HDW(x = mtcars, fl = ~ factor(cyl)*carb + vs + wt:gear + wt:gear:carb)
#
# # Works!! although there is a further interaction with carb!!
# lm(mpg ~ hp, data = HDW(mtcars, ~ factor(cyl)*carb + vs + wt:gear + wt:gear:carb))
# lm(mpg ~ hp + factor(cyl)*carb + vs + wt:gear + wt:gear:carb, data = mtcars)
#
# lm(mpg ~ hp, data = HDW(mtcars, ~ factor(cyl)*carb + vs + wt:gear))
# lm(mpg ~ hp + factor(cyl)*carb + vs + wt:gear, data = mtcars)
#
# lm(mpg ~ hp, data = HDW(mtcars, ~ cyl*carb + vs + wt:gear))
# lm(mpg ~ hp + cyl*carb + vs + wt:gear, data = mtcars)
#
#
# lm(mpg ~ hp, data = HDW(mtcars, mpg + hp ~ cyl*carb + factor(cyl)*poly(drat,2)))
# lm(mpg ~ hp + cyl*carb + factor(cyl)*poly(drat,2), data = mtcars)
#

Try the collapse package in your browser

Any scripts or data that you put into this service are public.

collapse documentation built on Nov. 3, 2024, 9:08 a.m.