inst/doc/introduction.R

## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----fig.width=6,fig.height=6-------------------------------------------------
## some unnassociated snps
set.seed(42)
nsnps=100
z1=rnorm(nsnps)
z2=rnorm(nsnps)
## spike in some strong effects
spikes=42:43
z1[spikes] = z1[spikes] + 35
z2[spikes] = z2[spikes] + 35
## add weaker effects at other snps
z1[-spikes] = z1[-spikes] + 
  rnorm(nsnps,
        mean=pmax(30-abs(1:nsnps-mean(spikes)),0),sd=1)[-spikes]
z2[-spikes] = z2[-spikes] + 
  rnorm(nsnps,
        mean=pmax(30-abs(1:nsnps-mean(spikes)),0),sd=1)[-spikes]
s1=s2=rep(sqrt(0.001),nsnps)
beta1=z1 * s1
beta2=z2 * s2
summary(exp(beta1))
summary(exp(beta2))

library(coloc)
D1=list(beta=beta1,varbeta=s1^2,type="cc",snp=paste0("v",1:100),position=1:100)
D2=list(beta=beta2,varbeta=s2^2,type="cc",snp=paste0("v",1:100),position=1:100)
oldpar=par(mfrow=c(2,1))
plot_dataset(D1); title(main="trait 1"); 
abline(v=spikes[2])
plot_dataset(D2); title(main="trait 2"); 
abline(v=spikes[2])
par(oldpar)

## -----------------------------------------------------------------------------
  coloc.abf(D1,D2)

## ----fig.width=6,fig.height=6-------------------------------------------------
variable_information=1/(sqrt(0.92))
variable_information
s1[spikes]=s1[spikes] * (c(1,variable_information))
  s2[spikes]=s2[spikes] * (c(variable_information,1))
A1=list(beta=beta1,varbeta=s1^2,type="cc",snp=paste0("v",1:100),position=1:100)
A2=list(beta=beta2,varbeta=s2^2,type="cc",snp=paste0("v",1:100),position=1:100)

oldpar <- par(mfrow = c(1,2))
plot_dataset(A1); title(main="trait 1, modified"); 
abline(v=spikes[2])
plot_dataset(A2); title(main="trait 2"); 
abline(v=spikes[2])
par(oldpar)

## -----------------------------------------------------------------------------
coloc.abf(A1,A2)

## ----fig.width=6,fig.height=6-------------------------------------------------
oldpar=par(mfrow=c(2,1))
plot(1:nsnps, finemap.abf(D1)$SNP.PP[1:nsnps], 
     xlab="Position",ylab="Posterior prob")
title(main="trait 1, original"); abline(v=spikes[2])
plot(1:nsnps, finemap.abf(D2)$SNP.PP[1:nsnps], 
     xlab="Position",ylab="Posterior prob")
title(main="trait 2, original"); abline(v=spikes[2])
par(mfrow=c(2,1))
plot(1:nsnps, finemap.abf(A1)$SNP.PP[1:nsnps], 
     xlab="Position",ylab="Posterior prob")
title(main="trait 1, modified"); abline(v=spikes[2])
plot(1:nsnps, finemap.abf(A2)$SNP.PP[1:nsnps], 
     xlab="Position",ylab="Posterior prob")
title(main="trait 2, modified"); abline(v=spikes[2])
par(oldpar)

## -----------------------------------------------------------------------------
library(colocPropTest)
LD=diag(nsnps); dimnames(LD)=list(D1$snp,D1$snp)
result=run_proptests(D1,D2,LD=LD)
min(result$fdr)

## -----------------------------------------------------------------------------
resultA=run_proptests(A1,A2,LD=LD)
min(resultA$fdr)

## ----fig.width=6,fig.height=6-------------------------------------------------
beta1=c(1,.9)
vbeta1=matrix(c(.1,.09,.09,.1),2,2)
beta2=c(1,0)
vbeta2=matrix(c(.1,0,0,.1),2,2)
library(plotrix)
plot(beta1, beta2, xlim=c(-.1,1.1), ylim=c(-.1,1.1),
     xlab=c("study 1"), ylab=c("study 2"),asp=1)
abline(0,1,lty=2)
points(0,0,pch="x"); 
text(c(beta1,0)-.05, c(beta2,0), c("snp 1","snp 2","origin"), adj=c(1,0.5))
draw.circle(beta1[1],beta2[1],.196)
draw.circle(beta1[2],beta2[2],.196); 
title(main="Effect sizes and confidence intervals")

Try the colocPropTest package in your browser

Any scripts or data that you put into this service are public.

colocPropTest documentation built on June 24, 2024, 9:08 a.m.