Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----fig.width=6,fig.height=6-------------------------------------------------
## some unnassociated snps
set.seed(42)
nsnps=100
z1=rnorm(nsnps)
z2=rnorm(nsnps)
## spike in some strong effects
spikes=42:43
z1[spikes] = z1[spikes] + 35
z2[spikes] = z2[spikes] + 35
## add weaker effects at other snps
z1[-spikes] = z1[-spikes] +
rnorm(nsnps,
mean=pmax(30-abs(1:nsnps-mean(spikes)),0),sd=1)[-spikes]
z2[-spikes] = z2[-spikes] +
rnorm(nsnps,
mean=pmax(30-abs(1:nsnps-mean(spikes)),0),sd=1)[-spikes]
s1=s2=rep(sqrt(0.001),nsnps)
beta1=z1 * s1
beta2=z2 * s2
summary(exp(beta1))
summary(exp(beta2))
library(coloc)
D1=list(beta=beta1,varbeta=s1^2,type="cc",snp=paste0("v",1:100),position=1:100)
D2=list(beta=beta2,varbeta=s2^2,type="cc",snp=paste0("v",1:100),position=1:100)
oldpar=par(mfrow=c(2,1))
plot_dataset(D1); title(main="trait 1");
abline(v=spikes[2])
plot_dataset(D2); title(main="trait 2");
abline(v=spikes[2])
par(oldpar)
## -----------------------------------------------------------------------------
coloc.abf(D1,D2)
## ----fig.width=6,fig.height=6-------------------------------------------------
variable_information=1/(sqrt(0.92))
variable_information
s1[spikes]=s1[spikes] * (c(1,variable_information))
s2[spikes]=s2[spikes] * (c(variable_information,1))
A1=list(beta=beta1,varbeta=s1^2,type="cc",snp=paste0("v",1:100),position=1:100)
A2=list(beta=beta2,varbeta=s2^2,type="cc",snp=paste0("v",1:100),position=1:100)
oldpar <- par(mfrow = c(1,2))
plot_dataset(A1); title(main="trait 1, modified");
abline(v=spikes[2])
plot_dataset(A2); title(main="trait 2");
abline(v=spikes[2])
par(oldpar)
## -----------------------------------------------------------------------------
coloc.abf(A1,A2)
## ----fig.width=6,fig.height=6-------------------------------------------------
oldpar=par(mfrow=c(2,1))
plot(1:nsnps, finemap.abf(D1)$SNP.PP[1:nsnps],
xlab="Position",ylab="Posterior prob")
title(main="trait 1, original"); abline(v=spikes[2])
plot(1:nsnps, finemap.abf(D2)$SNP.PP[1:nsnps],
xlab="Position",ylab="Posterior prob")
title(main="trait 2, original"); abline(v=spikes[2])
par(mfrow=c(2,1))
plot(1:nsnps, finemap.abf(A1)$SNP.PP[1:nsnps],
xlab="Position",ylab="Posterior prob")
title(main="trait 1, modified"); abline(v=spikes[2])
plot(1:nsnps, finemap.abf(A2)$SNP.PP[1:nsnps],
xlab="Position",ylab="Posterior prob")
title(main="trait 2, modified"); abline(v=spikes[2])
par(oldpar)
## -----------------------------------------------------------------------------
library(colocPropTest)
LD=diag(nsnps); dimnames(LD)=list(D1$snp,D1$snp)
result=run_proptests(D1,D2,LD=LD)
min(result$fdr)
## -----------------------------------------------------------------------------
resultA=run_proptests(A1,A2,LD=LD)
min(resultA$fdr)
## ----fig.width=6,fig.height=6-------------------------------------------------
beta1=c(1,.9)
vbeta1=matrix(c(.1,.09,.09,.1),2,2)
beta2=c(1,0)
vbeta2=matrix(c(.1,0,0,.1),2,2)
library(plotrix)
plot(beta1, beta2, xlim=c(-.1,1.1), ylim=c(-.1,1.1),
xlab=c("study 1"), ylab=c("study 2"),asp=1)
abline(0,1,lty=2)
points(0,0,pch="x");
text(c(beta1,0)-.05, c(beta2,0), c("snp 1","snp 2","origin"), adj=c(1,0.5))
draw.circle(beta1[1],beta2[1],.196)
draw.circle(beta1[2],beta2[2],.196);
title(main="Effect sizes and confidence intervals")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.