Description Usage Arguments Value See Also Examples
Hopkins.index
calculates the Hopkins index that can be used as an indicator of the non-randomness of data prior to clustering.
1 |
data |
A numeric matrix. |
The Hopkins index as a numeric value
The index is described in, e.g.: Han, Jiawei; Kamber, Micheline (2010): Data mining. Concepts and techniques. 2nd ed., Amsterdam: Elsevier/Morgan Kaufmann (The Morgan Kaufmann series in data management systems).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## Not run:
#Random data generation, 10 dimensions, 500 observations, 2 clusters,
#Multivariate-Bernoulli distributed
require("gtools")
data = c()
p = 0.0
for (i in 1:2)
{
temp = c()
for (j in 1:10)
temp = cbind(temp, rbinom(250, 1, p+(i-1)*0.5+(0.025*i)*j))
data=rbind(data, temp)
}
data = data[permute(1:500),]
Hopkins.index(data)
## End(Not run)
|
This is package 'modeest' written by P. PONCET.
For a complete list of functions, use 'library(help = "modeest")' or 'help.start()'.
Warning messages:
1: In rgl.init(initValue, onlyNULL) : RGL: unable to open X11 display
2: 'rgl_init' failed, running with rgl.useNULL = TRUE
3: .onUnload failed in unloadNamespace() for 'rgl', details:
call: fun(...)
error: object 'rgl_quit' not found
Loading required package: gtools
[1] 0.9310345
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.