## lower resolution - less size (default dpi = 72): knitr::opts_chunk$set(dpi = 48) ```r require(copula) require(grid) require(lattice) source(system.file("Rsource", "dnac.R", package="copula")) set.seed(271)
Note that nacLL()
will use package partitions
and polynom
.
Consider the following setup.
n <- 250 family <- "Gumbel" tau <- c(0.2, 0.4, 0.6) th <- getAcop(family)@iTau(tau) G3 <- onacopula(family, C(th[1], , list(C(th[2], 1:2), C(th[3], 3:5))))
Sample and compute the log-likelihood.
U <- rnacopula(n, G3) nacLL(G3, u=U) # log-likelihood at correct parameters
Consider the following setup.
n <- 250 family <- "Gumbel" cop. <- getAcop(family) tau <- c(0.2, 0.4, 0.6) th <- cop.@iTau(tau) cop <- onacopula(family, C(th[1], c(1,4), list(C(th[2], 2:3), C(th[3], 5:7))))
Sample and compute the log-likelihood.
U <- rnacopula(n, cop) nacLL(cop, u=U) # log-likelihood at correct parameters
Consider the following setup.
n <- 250 family <- "Gumbel" tau <- c(0.25, 0.5) th <- getAcop(family)@iTau(tau) copTrue <- onacopula(family, C(th[1], 1, C(th[2], 2:3)))
Sample and compute the log-likelihood.
U <- rnacopula(n, copTrue) nacLL(copTrue, u=U) # log-likelihood at correct parameters
We consider a (1, (2,..,$d$))-structure structure here (we choose $d=3$ here but larger $d$ are of course possible; plotting can be done as long as we consider two parameters only).
family <- "Gumbel" # choose "Clayton" or "Gumbel" compTr <- 1 # non-sectorial indices; *Tr stands for the true (nesting structure/model) scompTr <- 2:3 # sectorial indices (for plotting, need 2:d) stopifnot(compTr==1) # otherwise, sub (for plotting, see below) is wrong
We first define the negative log-likelihood.
##' Negative Log Likelihood for the two-parameter case ##' C_0({u_j}, C_1({u_k})) where j in 'comp'; k in 'scomp' nLL2 <- function(th, u, family, comp, scomp) { stopifnot(length(th) == 2) if(th[1] > th[2]) # sufficient nesting condition not fulfilled return(Inf) # for minimization cop <- onacopulaL(family, list(th[1], comp, list(list(th[2], scomp)))) -nacLL(cop, u=u) }
n <- 100 cop. <- getAcop(family) tau <- c(0.25, 0.5) (thTr <- cop.@iTau(tau)) cop <- onacopula(family, C(thTr[1], compTr, C(thTr[2], scompTr))) # copula U <- rnacopula(n, cop) # sample h <- 0.2 # delta{tau} for defining a range of theta's (th0 <- cop.@iTau(c(tau[1]-h, tau[1]+h))) (th1 <- cop.@iTau(c(tau[2]-h, tau[2]+h))) m <- 20 # number of grid points grid <- expand.grid(th0= seq(th0[1], th0[2], length.out=m), th1= seq(th1[1], th1[2], length.out=m)) val.grid <- apply(grid, 1, nLL2, u=U, family=family, comp=compTr, scomp=scompTr)
First we determine some plot supplements including the optimum of the negative log-likelihood on the grid.
true.val <- c(th0=thTr[1], th1=thTr[2], nLL=nLL2(thTr, u=U, family=family, comp=compTr, scomp=scompTr)) # true value ind <- which.min(val.grid) opt.grd <- c(grid[ind,], nLL=val.grid[ind]) # optimum on the grid pts <- rbind(true.val, opt.grd) # points to add to wireframe plot title <- paste("-log-likelihood of a nested", family, "copula") # title mysec <- { if(length(scompTr)==2) bquote(italic(u[3])) else substitute(list(...,italic(u[j])), list(j=max(scompTr))) } sub <- substitute(italic(C(bolditalic(u)))==italic(C[0](u[1],C[1](u[2],MSEC))) ~~~~~~ italic(n)==N ~~~~~~ tau(theta[0])==TAU0 ~~~~~~ tau(theta[1])==TAU1, list(MSEC=mysec, N=n, TAU0=tau[1], TAU1=tau[2])) sub <- as.expression(sub) # lattice "bug" (only needed by lattice) xlab <- expression(italic(theta[0])) ylab <- expression(italic(theta[1])) zlab <- list(as.expression(-log~L * group("(",italic(theta[0])*"," ~ italic(theta[1])*";"~bolditalic(u),")")), rot = 90) sTit <- list(c(expression(group("(",list(theta[0],theta[1]),")")^T), expression(group("(",list(hat(theta)["0,n"],hat(theta)["1,n"]),")")^T)))
Now consider a wireframe and a level plot.
wireframe(val.grid~grid[,1]*grid[,2], aspect=1, zoom=1.02, xlim=th0, ylim=th1, zlim= range(val.grid, as.numeric(pts[,3]), finite=TRUE), xlab=xlab, ylab=ylab, zlab=zlab, main=title, sub=sub, pts=pts, par.settings=list(standard.theme(color=FALSE), layout.heights=list(sub=2.4), background=list(col="#ffffff00"), axis.line=list(col="transparent"), clip=list(panel="off")), alpha.regions=0.5, scales=list(col=1, arrows=FALSE), ## add wire/points panel.3d.wireframe = function(x, y, z, xlim, ylim, zlim, xlim.scaled, ylim.scaled, zlim.scaled, pts, ...) { panel.3dwire(x=x, y=y, z=z, xlim=xlim, ylim=ylim, zlim=zlim, xlim.scaled=xlim.scaled, ylim.scaled=ylim.scaled, zlim.scaled=zlim.scaled, ...) panel.3dscatter(x=as.numeric(pts[,1]), y=as.numeric(pts[,2]), z=as.numeric(pts[,3]), xlim=xlim, ylim=ylim, zlim=zlim, xlim.scaled=xlim.scaled, ylim.scaled=ylim.scaled, zlim.scaled=zlim.scaled, type="p", col=1, pch=c(3,4), lex=2, cex=1.4, .scale=TRUE, ...) }, key = list(x=-0.01, y=1, points=list(pch=c(3,4), col=1, lwd=2, cex=1.4), text = sTit, padding.text=3, cex=1, align=TRUE, transparent=TRUE)) levelplot(val.grid~grid[,1]*grid[,2], aspect=1, xlab=xlab, ylab=ylab, par.settings=list(layout.heights=list(main=3, sub=2), regions=list(col=gray(140:400/400))), xlim= extendrange(grid[,1], f = 0.04), ylim= extendrange(grid[,2], f = 0.04), main=title, sub=sub, pts=pts, scales=list(alternating=c(1,1), tck=c(1,0)), contour=TRUE, panel=function(x, y, z, pts, ...){ panel.levelplot(x=x, y=y, z=z, ...) grid.points(x=pts[1,1], y=pts[1,2], pch=3, gp=gpar(lwd=2, col="black")) # + true value grid.points(x=pts[2,1], y=pts[2,2], pch=4, gp=gpar(lwd=2, col="black")) # x optimum }, key = list(x=0.18, y=1.09, points=list(pch=c(3,4), col=1, lwd=2, cex=1.4), columns = 2, text = sTit, align=TRUE, transparent=TRUE))
For illustration purposes, we start not too closely to the optimum.
ropt <- optim(c(1, 3), nLL2, u=U, family=family, comp=compTr, scomp=scompTr)
Now compare the different results (true values, optimum on the grid, optimum via optim()
).
rbind(pts, optim=c(ropt$par, ropt$value))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.