Mvdc | R Documentation |
Density, distribution function, and random generator for a multivariate distribution via copula and parametric margins.
For likelihood and fitting these distributions to data, see
fitMvdc
.
mvdc(copula, margins, paramMargins, marginsIdentical = FALSE,
check = TRUE, fixupNames = TRUE)
dMvdc(x, mvdc, log=FALSE)
pMvdc(x, mvdc)
rMvdc(n, mvdc)
copula |
an object of |
margins |
a |
paramMargins |
a |
marginsIdentical |
logical variable restricting the marginal distributions to be identical. |
check |
logical indicating to apply quick checks about existence of
|
fixupNames |
logical indicating if the parameters of the margins
should get automatic names (from |
mvdc |
a |
x |
a numeric vector of length the copula dimension, say |
log |
logical indicating if the |
n |
number of observations to be generated. |
The characters in argument margins
are used to construct
density, distribution, and quantile function names. For
example, norm
can be used to specify marginal distribution,
because dnorm
, pnorm
, and qnorm
are all
available.
A user-defined distribution, for example, fancy
, can be used as
margin provided that dfancy
, pfancy
, and
qfancy
are available.
Each component list in argument paramMargins
is a
list
with named components which are used to specify the
parameters of the marginal distributions. For example, the list
paramMargins = list(list(mean = 0, sd = 2), list(rate = 2))
can be used to specify that the first margin is normal with mean 0 and standard deviation 2, and the second margin is exponential with rate 2.
mvdc()
constructs an object of class "mvdc"
.
dMvdc()
gives the density, pMvdc()
gives the cumulative
distribution function, and rMvdc()
generates random variates.
mvdc()
, fitMvdc
, etc, are only for
parametric margins.
If you do not want to model all margins parametrically, use the
standard copula approach, transforming the data by their
empirical margins via pobs
and modelling the copula
alone, e.g., using fitCopula
, i.e., conceptually,
using
fitCopula(.., pobs(x))
ellipCopula
,
archmCopula
;
the classes mvdc
and copula
.
## construct a bivariate distribution whose marginals
## are normal and exponential respectively, coupled
## together via a normal copula
mv.NE <- mvdc(normalCopula(0.75), c("norm", "exp"),
list(list(mean = 0, sd =2), list(rate = 2)))
dim(mv.NE)
mv.NE # using its print() / show() method
persp (mv.NE, dMvdc, xlim = c(-4, 4), ylim=c(0, 2), main = "dMvdc(mv.NE)")
persp (mv.NE, pMvdc, xlim = c(-4, 4), ylim=c(0, 2), main = "pMvdc(mv.NE)")
contour(mv.NE, dMvdc, xlim = c(-4, 4), ylim=c(0, 2))
# Generate (bivariate) random numbers from that, and visualize
x.samp <- rMvdc(250, mv.NE)
plot(x.samp)
summary(fx <- dMvdc(x.samp, mv.NE))
summary(Fx <- pMvdc(x.samp, mv.NE))
op <- par(mfcol=c(1,2))
pp <- persp(mv.NE, pMvdc, xlim = c(-5,5), ylim=c(0,2),
main = "pMvdc(mv.NE)", ticktype="detail")
px <- copula:::perspMvdc(x.samp, FUN = F.n, xlim = c(-5, 5), ylim = c(0, 2),
main = "F.n(x.samp)", ticktype="detail")
par(op)
all.equal(px, pp)# about 5% difference
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.