pobs | R Documentation |
Compute the pseudo-observations for the given data matrix.
pobs(x, na.last = "keep",
ties.method = eval(formals(rank)$ties.method), lower.tail = TRUE)
x |
|
na.last |
string passed to |
ties.method |
|
lower.tail |
|
Given n
realizations
\bm{x}_i=(x_{i1},\dots,x_{id})^T
,
i\in\{1,\dots,n\}
of a random vector \bm{X}
,
the pseudo-observations are defined via u_{ij}=r_{ij}/(n+1)
for
i\in\{1,\dots,n\}
and j\in\{1,\dots,d\}
, where r_{ij}
denotes the rank of x_{ij}
among all
x_{kj}
, k\in\{1,\dots,n\}
. When there are
no ties in any of the coordinate samples of x
, the
pseudo-observations can thus also be computed by component-wise applying the
marginal empirical distribution functions to the data and scaling the result by
n/(n+1)
. This asymptotically negligible scaling factor is used to
force the variates to fall inside the open unit hypercube, for example, to
avoid problems with density evaluation at the boundaries. Note that
pobs(, lower.tail=FALSE)
simply returns 1-pobs()
.
matrix
(or vector
) of the same
dimensions as x
containing the pseudo-observations.
## Simple definition of the function:
pobs
## Draw from a multivariate normal distribution
d <- 10
set.seed(1)
P <- Matrix::nearPD(matrix(pmin(pmax(runif(d*d), 0.3), 0.99), ncol=d))$mat
diag(P) <- rep(1, d)
n <- 500
x <- MASS::mvrnorm(n, mu = rep(0, d), Sigma = P)
## Compute pseudo-observations (should roughly follow a Gauss
## copula with correlation matrix P)
u <- pobs(x)
plot(u[,5],u[,10], xlab=quote(italic(U)[1]), ylab=quote(italic(U)[2]))
## All components: pairwise plot
pairs(u, gap=0, pch=".", labels =
as.expression( lapply(1:d, function(j) bquote(italic(U[.(j)]))) ))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.