Nothing
#' NOAA NCDC station IDs per county.
#'
#' Returns a dataframe with NOAA NCDC station IDs for
#' a single U.S. county. This function has options to filter stations based on
#' maximum and minimum dates, as well as percent data coverage.
#'
#' @note Because this function uses the NOAA API to identify the weather
#' monitors within a U.S. county, you will need to get an access token from
#' NOAA to use this function. Visit NOAA's token request page
#' (\url{http://www.ncdc.noaa.gov/cdo-web/token}) to request a token by
#' email. You then need to set that API code in your R session (e.g., using
#' \code{options(noaakey = "your key")}, replacing "your key" with the API
#' key you've requested from NOAA). See the package vignette for more details.
#'
#' @param fips A string with the five-digit U.S. FIPS code of a county
#' in numeric, character, or factor format.
#' @param date_min A string with the desired starting date in character, ISO
#' format ("yyyy-mm-dd"). The dataframe returned will include only stations
#' that have data for dates including and after the specified date.
#' @param date_max A string with the desired ending date in character, ISO
#' format ("yyyy-mm-dd"). The dataframe returned will include only stations
#' that have data for dates up to and including the specified date.
#'
#' @return A dataframe with NOAA NCDC station IDs for a single U.S. county.
#'
#' @examples
#' \dontrun{
#' stations_36005 <- daily_stations("36005")
#' stations_36005
#'
#' miami_stations <- daily_stations("12086", date_min = "1999-01-01",
#' date_max = "2012-12-31")
#' miami_stations
#' }
#'
#' @importFrom dplyr %>%
daily_stations <- function(fips, date_min = NULL, date_max = NULL) {
FIPS <- paste0('FIPS:', fips)
station_ids <- rnoaa::ncdc_stations(datasetid = 'GHCND', locationid = FIPS,
limit = 10)
station_df <- station_ids$data
if (station_ids$meta$totalCount > 10) {
how_many_more <- station_ids$meta$totalCount - 10
more_stations <- rnoaa::ncdc_stations(datasetid = 'GHCND',
locationid = FIPS,
limit = how_many_more,
offset = 10 + 1)
station_df <- rbind(station_df, more_stations$data)
}
# If either `min_date` or `max_date` option was null, set to a date that
# will keep all monitors in the filtering.
if (is.null(date_max)) {
date_max <- min(station_df$maxdate)
}
if (is.null(date_min)) {
date_min <- max(station_df$mindate)
}
date_max <- lubridate::ymd(date_max)
date_min <- lubridate::ymd(date_min)
tot_df <- dplyr::mutate_(station_df,
mindate = ~ lubridate::ymd(mindate),
maxdate = ~ lubridate::ymd(maxdate)) %>%
dplyr::filter_(~ maxdate >= date_min & mindate <= date_max) %>%
dplyr::select_(.dots = c("id", "latitude", "longitude", "name")) %>%
dplyr::mutate_(id = ~ gsub("GHCND:", "", id))
return(tot_df)
}
#' Average daily weather data across multiple stations.
#'
#' Returns a dataframe with daily weather averaged across
#' stations, as well as columns showing the number of stations contributing
#' to the average for each variable and each day.
#'
#' @param weather_data A dataframe with daily weather observations. This
#' dataframe is returned from the \code{rnoaa} function
#' \code{meteo_pull_monitors}.
#'
#' @importFrom dplyr %>%
ave_daily <- function(weather_data) {
all_cols <- colnames(weather_data)
not_vars <- c("id", "date")
g_cols <- all_cols[!all_cols %in% not_vars]
#not sure about -id -date cols - how to do NSE here
averaged_data <- tidyr::gather_(weather_data, key_col = "key",
value_col = "value",
gather_cols = g_cols) %>%
dplyr::group_by_(.dots = c("date", "key")) %>%
dplyr::summarize_(mean = ~ mean(value, na.rm = TRUE)) %>%
tidyr::spread_(key_col = "key", value_col = "mean") %>%
dplyr::ungroup()
n_reporting <- tidyr::gather_(weather_data, key_col = "key",
value_col = "value",
gather_cols = g_cols) %>%
dplyr::group_by_(.dots = c("date", "key")) %>%
dplyr::summarize_(n_reporting = ~ sum(!is.na(value))) %>%
dplyr::mutate_(key = ~ paste(key, "reporting", sep = "_")) %>%
tidyr::spread_(key_col = "key", value_col = "n_reporting")
averaged_data <- dplyr::left_join(averaged_data, n_reporting,
by = "date")
return(averaged_data)
}
#' Filter stations based on "coverage" requirements.
#'
#' Filters available weather stations based on a specified required minimum
#' coverage (i.e., percent non-missing daily observations). Weather stations
#' with non-missing data for fewer days than specified by \code{coverage} will
#' be excluded from the county average.
#'
#' @param coverage_df A dataframe as returned by the \code{meteo_coverage}
#' function in the \code{rnoaa} package
#' @param coverage A numeric value in the range of 0 to 1 that specifies
#' the desired percentage coverage for the weather variable (i.e., what
#' percent of each weather variable must be non-missing to include data from
#' a monitor when calculating daily values averaged across monitors).
#'
#' @return A dataframe with stations that meet the specified coverage
#' requirements for weather variables included in the \code{coverage_df}
#' dataframe passed to the function.
#'
#' @importFrom dplyr %>%
filter_coverage <- function(coverage_df, coverage = 0) {
if (is.null(coverage)) {
coverage <- 0
}
all_cols <- colnames(coverage_df)
not_vars <- c("id", "start_date", "end_date", "total_obs")
g_cols <- all_cols[!all_cols %in% not_vars]
filtered <- dplyr::select_(coverage_df,
.dots = list("-start_date", "-end_date",
"-total_obs")) %>%
tidyr::gather_(key_col = "key", value_col = "covered",
gather_cols = g_cols) %>%
dplyr::filter_(~ covered >= coverage) %>%
dplyr::mutate_(covered_n = ~ 1) %>%
dplyr::group_by_(.dots = list("id")) %>%
dplyr::mutate_(good_monitor = ~ sum(!is.na(covered_n)) > 0) %>%
dplyr::ungroup() %>%
dplyr::filter_(~ good_monitor) %>%
dplyr::select_(.dots = list("-good_monitor", "-covered_n"))
colnames(filtered)[3] <- "calc_coverage"
return(filtered)
}
#' Plot daily weather stations for a particular county.
#'
#' Produces a map with points indicating stations that contribute
#' to the weather data in the \code{daily_data} data frame output by
#' \code{daily_fips}.
#'
#' @param fips A five-digit FIPS county code.
#' @param daily_data A list returned from the function \code{daily_df} (see
#' helpfile for \code{daily_df}).
#' @param point_color Character string with color for points
#' mapping the locations of weather stations (passes to \code{ggplot}).
#' @param point_size Character string with size for for points
#' mapping the locations of weather stations (passes to \code{ggplot}).
#' @param station_label TRUE / FALSE Whether to include labels for
#' each weather station.
#'
#' @return A \code{ggplot} object mapping all weather stations for a particular
#' county satisfying the conditions present in \code{daily_df}'s
#' arguments (date range, coverage, and/or weather variables). 2011 U.S.
#' Census cartographic boundary shapefiles are used to provide county
#' outlines.
#'
#' @examples
#' \dontrun{
#' miami_stations <- daily_stations(fips = "12086", date_min = "1992-08-01",
#' date_max = "1992-08-31")
#' daily_data <- daily_df(stations = miami_stations, coverage = 0.90,
#' var = c("tmax", "tmin", "prcp"),
#' date_min = "1992-08-01", date_max = "1992-08-31")
#' daily_stationmap(fips = "12086", daily_data = daily_data)
#' }
#'
#' @importFrom dplyr %>%
daily_stationmap <- function(fips, daily_data, point_color = "firebrick",
point_size = 2, station_label = FALSE) {
# for plot title
census_data <- countyweather::county_centers
row_num <- which(grepl(fips, census_data$fips))
title <- as.character(census_data[row_num, "name"])
# for ggmap lat/lon
loc_fips <- which(census_data$fips == fips)
lat_fips <- as.numeric(census_data[loc_fips, "latitude"])
lon_fips <- as.numeric(census_data[loc_fips, "longitude"])
state <- stringi::stri_sub(fips, 1, 2)
county <- stringi::stri_sub(fips, 3)
shp <- tigris::counties(state, cb = TRUE)
county_shp <- shp[shp$COUNTYFP == county, ]
# convert to raster so that we can add geom_raster() (which gets rid of the
# geom_polygons island problem)
r <- raster::raster(raster::extent(county_shp))
raster::res(r) <- 0.001
raster::projection(r) <- sp::proj4string(county_shp)
r <- raster::rasterize(county_shp, r)
rdf <- data.frame(raster::rasterToPoints(r))
# use range of raster object to figure out what zoom to use in ggmap
x_range <- r@extent[2] - r@extent[1]
y_range <- r@extent[4] - r@extent[3]
# limits were calculated by finding out the x and y limits of a ggmap at each
# zoom, then accounting for the extra space we want to add around county
# shapes.
if (x_range > y_range) {
if (x_range <= 0.1997) {
zoom <- 12
xmin <- r@extent[1] - 0.01
xmax <- r@extent[2] + 0.01
ymin <- r@extent[3] - 0.01
ymax <- r@extent[4] + 0.01
}
if (x_range <= 0.3894 & x_range > 0.1997) {
zoom <- 11
xmin <- r@extent[1] - 0.025
xmax <- r@extent[2] + 0.025
ymin <- r@extent[3] - 0.025
ymax <- r@extent[4] + 0.025
}
if(x_range <= 0.7989 & x_range > 0.3894) {
zoom <- 10
xmin <- r@extent[1] - 0.04
xmax <- r@extent[2] + 0.04
ymin <- r@extent[3] - 0.04
ymax <- r@extent[4] + 0.04
}
if (x_range <= 1.6378 & x_range > 0.7989) {
zoom <- 9
xmin <- r@extent[1] - 0.06
xmax <- r@extent[2] + 0.06
ymin <- r@extent[3] - 0.06
ymax <- r@extent[4] + 0.06
}
if (x_range <= 3.3556 & x_range > 1.6378) {
zoom <- 8
xmin <- r@extent[1] - 0.08
xmax <- r@extent[2] + 0.08
ymin <- r@extent[3] - 0.08
ymax <- r@extent[4] + 0.08
}
if (x_range <= 6.8313 & x_range > 3.3556) {
zoom <- 7
xmin <- r@extent[1] - 0.1
xmax <- r@extent[2] + 0.1
ymin <- r@extent[3] - 0.1
ymax <- r@extent[4] + 0.1
}
} else {
if(y_range <= 0.1616) {
zoom <- 12
xmin <- r@extent[1] - 0.01
xmax <- r@extent[2] + 0.01
ymin <- r@extent[3] - 0.01
ymax <- r@extent[4] + 0.01
}
if (y_range <= 0.3135 & y_range > 0.1616) {
zoom <- 11
xmin <- r@extent[1] - 0.025
xmax <- r@extent[2] + 0.025
ymin <- r@extent[3] - 0.025
ymax <- r@extent[4] + 0.025
}
if (y_range <= 0.647 & y_range > 0.3135) {
zoom <- 10
xmin <- r@extent[1] - 0.04
xmax <- r@extent[2] + 0.04
ymin <- r@extent[3] - 0.04
ymax <- r@extent[4] + 0.04
}
if (y_range <= 1.3302 & y_range > 0.647) {
zoom <- 9
xmin <- r@extent[1] - 0.06
xmax <- r@extent[2] + 0.06
ymin <- r@extent[3] - 0.06
ymax <- r@extent[4] + 0.06
}
if (y_range <= 2.7478 & y_range > 1.3302) {
zoom <- 8
xmin <- r@extent[1] - 0.08
xmax <- r@extent[2] + 0.08
ymin <- r@extent[3] - 0.08
ymax <- r@extent[4] + 0.08
}
if (y_range <= 2.8313 & y_range > 2.7478) {
zoom <- 7
xmin <- r@extent[1] - 0.1
xmax <- r@extent[2] + 0.1
ymin <- r@extent[3] - 0.1
ymax <- r@extent[4] + 0.1
}
}
county <- suppressMessages(ggmap::get_map(c(lon_fips,
lat_fips), zoom = zoom,
color = "bw"))
gg_map <- ggmap::ggmap(county)
# limits of a ggmap depend on your center lat/lon (this means the limits
# above won't work exactly for every county)
map_ymin <- gg_map$data$lat[1]
map_ymax <- gg_map$data$lat[3]
map_xmin <- gg_map$data$lon[1]
map_xmax <- gg_map$data$lon[2]
if ((ymin < map_ymin) | (ymax > map_ymax) | (xmin < map_xmin) |
(xmax > map_xmax)) {
zoom <- zoom - 1
county <- suppressMessages(ggmap::get_map(c(lon_fips, lat_fips),
zoom = zoom, color = "bw"))
gg_map <- ggmap::ggmap(county)
}
map <- gg_map +
ggplot2::coord_fixed(xlim = c(xmin, xmax),
ylim = c(ymin, ymax)) +
ggplot2::geom_raster(mapping = ggplot2::aes_(~x, ~y),
data = rdf, fill = "yellow",
alpha = 0.2,
inherit.aes = FALSE,
na.rm = TRUE)
station_df <- daily_data$station_df %>%
dplyr::tbl_df() %>%
dplyr::filter_(~ !duplicated(id)) %>%
dplyr::arrange_(~ dplyr::desc(latitude)) %>%
dplyr::mutate_(name = ~ factor(name, levels = name))
if (station_label == TRUE) {
map_out <- map +
ggplot2::geom_point(data = station_df,
ggplot2::aes_(~ longitude, ~ latitude,
fill = ~ name),
colour = "black",
size = point_size,
shape = 21) +
ggplot2::ggtitle(title) +
ggplot2::theme_void()
} else {
map_out <- map +
ggplot2::geom_point(data = station_df,
ggplot2::aes_(~ longitude, ~ latitude),
colour = point_color,
size = point_size) +
ggplot2::theme_void() +
ggplot2::ggtitle(title)
}
return(map_out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.