Nothing
---
title: "Stripped_SUS3"
author: "Jacob Marsh"
date: "01/03/2022"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(root.dir = "UpSet_Plot/Rinputs/Rinputs2/Rinputs3",
echo = TRUE)
library(tidyverse)
library(dplyr)
library(viridis)
library(patchwork)
library(ggplot2)
library(scales)
library(ggsci)
library(ggalt)
```
```{r Import}
HF2 <- read.csv("Rinputs3/U_S_haps_fin3.txt") %>% mutate(altalleles = ifelse(altalleles=='',NA,altalleles))
AlleleFile <-read.csv("Rinputs3/U_S_allele_fin3.txt")
PhenoSum <- read.csv("Rinputs3/allpheno_resum3.txt")
AlleleCounts <- read.csv("Rinputs3/ACAN_tagSNPs.txt")
happhengrp <- read.csv("Rinputs3/happhengrp.txt")
TagPercDiffs <- read.csv("Rinputs3/percdifftags3.csv") %>%
subset(select = -X) %>% filter(TAGGING >= 31604127 & TAGGING <= 31777346)
```
```{r Reformat}
#A top plot
grplongHap <- tidyr::gather(HF2,
"dom_status",
"n",
3:6)
#B bot plot
happhengrp
#C left plot
AlPhen <- merge(x = AlleleFile,
y = PhenoSum,
by.x = "allele",
by.y = "Site")
#D right plot
TagProp2 <- AlleleCounts %>%
mutate(AltAF = AC / AF) %>%
subset(select = -c(AC,AF))
TagAlleles2 <- right_join(TagPercDiffs,
AlleleFile,
by =c("SNP" = "allele"))
TagAlProp2 <- right_join(TagAlleles2,
TagProp2,
by = c("TAGGING" = "SITE")) %>%
mutate(percdiff = 100*percdiff) %>% filter(!is.na(SNP))
#E dot plot
HapAlMatrix <- HF2 %>% separate_rows(altalleles,sep=';') %>%
mutate(value=1) %>% spread(altalleles,value,fill = 0) %>% select(-`<NA>`)
intersect <- HapAlMatrix %>%
as_tibble() %>%
gather(allele,
present,
7:ncol(.)) %>%
mutate(present=as.factor(present)) %>%
mutate(allele = str_remove(allele, "altalleles_"))
intersect_lines <- intersect %>%
filter(present == 1) %>%
group_by(hap) %>%
mutate(allele = as.numeric(allele)) %>%
summarise(max = max(allele),
min = min(allele)) %>%
mutate(min = as.character(min),
max = as.character(max))
#colours
npg_col = pal_npg("nrc")(9)
col_list <- c('wt'=npg_col[8],
'lr' = npg_col[3],
'oc' =npg_col[2],
'mc' =npg_col[4])
```
```{r Dotplot (E)}
E <- ggplot() +
geom_segment(data = intersect_lines, col = 'grey',
aes(x = hap,
xend = hap,
y = min,
yend = max),
size = 1.5)+
geom_point(data = intersect,
aes(hap,
as.character(allele),
fill =as.factor(present),
size = 2),
col ='black',
pch = 21) +
scale_fill_manual(values = c('white','black', 'white'))+
theme_minimal()+
theme(legend.position = 'none',
plot.margin = unit(c(0,0,0,0),
"cm"),
plot.title = element_blank(),
axis.text.y = element_text(size=10, face='bold', color = c("black", "black", "black", "black", "black", "red")),
axis.text.x = element_text(size=10, face = 'bold', color = "black")) +
ylab("Marker group") +
xlab("Haplotype combination") +
scale_y_discrete(position = "left", labels = c(paste0("M0",as.character(6:1))))
E
```
```{r Top plot (A)}
A <- ggplot(data = grplongHap %>%
mutate(dom_status=factor(dom_status,
levels = c('wt','lr','oc','mc'))),
aes(fill=dom_status,
y=n,
x=hap)) +
geom_bar(position="stack",
stat="identity") +
theme_minimal() +
scale_fill_manual("Domestication status",
values = col_list,
labels = c("Wild-Type", "Landrace", "Old Cultivar", "Modern Cultivar")) +
theme(legend.title = element_text(size = 8),
legend.text = element_text(size = 7),
legend.key.size = unit(6,
"mm"),
axis.text.x = element_text(face = "bold",
size = 10, color = c("black", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red")),
plot.margin = unit(c(0,0,0,0),
"cm"),
legend.position = c(0.8,0.8),
axis.text.y = element_text(face = "bold",
size = 10),
axis.title.x = element_blank()) +
scale_y_continuous(expand = c(0,0)) +
ylab("Population size") +
xlab("Haplotype combination")
A
```
```{r Bot plot (B)}
B <- ggplot(data = happhengrp %>%
mutate(Grp=factor(Grp,
levels = c('wt','lr','ocult','mcult')))
) +
geom_jitter(aes(x = Hap,
y = Prot,
fill= Grp),
alpha=0.25,
pch=21,
width=0.2) +
scale_fill_manual("Domestication status",values = col_list, guide = "none") +
geom_crossbar(data= aggregate(happhengrp[, 3],
list(happhengrp$Hap),
median),
aes(x= as.factor(Group.1),
y=x,
xmin= as.factor(Group.1) -1,
xmax=as.factor(Group.1) +1,
ymin=x,
ymax=x,
colour=x)) +
scale_colour_gradient('Mean',
low='red',
high='green',
limits=c(max(top_frac(happhengrp,
-0.2,
Prot)$Prot),
min(top_frac(happhengrp,
0.2,
Prot)$Prot)),
oob = squish) +
theme_minimal() +
theme(legend.position = "none",
axis.title.x = element_blank(),
axis.text.x = element_blank(),
plot.margin = unit(c(0,0,0,0),
"cm"),
axis.text.y = element_text(face = "bold",
size = 10)) +
ylab("% Seed protein") +
scale_x_discrete(position = "bottom") +
scale_y_continuous(position = "left", breaks = scales::pretty_breaks(n = 5))
B
```
```{r Patching AB}
AB <- A + B + plot_layout(design = "AA
BB")
AB
```
```{r Left plot (C)}
C <- AlPhen %>%
mutate(Type=factor(Type,levels = c("REF","MISS","HET","HETMISS","ALT"))) %>%
ggplot(aes(x = nInd,
y = as.character(allele),
fill = Type,
color = Type),
ylim()) +
geom_bar(aes(),
position = "stack",
stat = "identity",
colour = "black",
width = 0.8) +
scale_x_reverse(breaks = scales::pretty_breaks(n = 5),
expand = c(0,0)) +
theme_void() +
theme(axis.text.y = element_blank(),
axis.title.x = element_text(),
axis.title.y = element_blank(),
legend.title = element_text(size = 7),
legend.text = element_text(size = 5),
legend.key.size = unit(5,
"mm"),
axis.text.x = element_text(face = "bold",
size = 10),
legend.position = "bottom",
plot.margin = unit(c(0,0,0,0.1),
"cm"),
plot.title = element_blank()) +
# scale_color_manual(values = c('black', 'black', 'black', 'black', 'black', 'red'),
# guide=F) +
scale_fill_manual(values = rev(c('#440154FF', "#238A8DFF", "#73D055FF", "#FDE725FF", "#FFFFFF"))) +
xlab("Allele count") +
scale_y_discrete(position = "right", labels = c(paste0("M",as.character(20:10)), paste0("M0",as.character(7:1))))
C
```
```{r Right plot (D)}
D <- ggplot() +
geom_jitter(data = TagAlProp2,
aes(x = abs(percdiff),
y = as.character(SNP),
fill = AltAF),
alpha = 0.25,
pch = 21,
height = 0.25) +
scale_fill_gradient('Minor allele frequency',
low = 'white',
high = '#440154FF') +
scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
theme_minimal() +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(face = "bold",
size = 10, color = c("black", "black", "black", "black", "black", "red")),
plot.margin = unit(c(0,0.1,0,0),
"cm"),
legend.title = element_text(size = 7),
legend.text = element_text(size = 5),
legend.position = "bottom",
legend.key.size = unit(5,
"mm"),
plot.title = element_blank(),
axis.text.x = element_text(face = "bold",
size = 10),
axis.title.x = element_text()) +
xlab("Seed protein association [%]") +
scale_y_discrete(position = "left", labels = c(paste0(" M0",as.character(6:1))))
D
```
```{r Patching}
AB <- A + B + plot_layout(design = "AA
BB")
AB
ggsave('AB3.pdf',
AB,
device = 'pdf',
dpi = 1800,
height = 195,
width = 110,
units = "mm")
CD <- C + D + plot_layout(design = "CD
CD")
CD
ggsave('CD3.pdf',
CD,
device = 'pdf',
dpi = 1800,
height = 97.875,
width = 174,
units = "mm")
E
ggsave('E3.pdf',
E,
device = 'pdf',
dpi = 1800,
height = 120,
width = 120,
units = "mm")
```
```{r BigUpSet}
ABCDE <- A + B + C + D + E + guide_area() + plot_layout(design = "FA#
CED
#B#", guides = "collect")
ABCDE
E2 <- E + theme(#axis.title.y = element_blank(),
#axis.title.x = element_blank()) +
axis.text.x = element_text(face = "bold",
size = 10, color = c("black", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red")))
ABCDE <- A + B + C + D + E2 + guide_area() + plot_layout(design = "FA#
CED
#B#", guides = "collect")
ggsave('ABCDE4.pdf',
ABCDE,
device = 'pdf',
dpi = 1800,
height = 240,
width = 240,
units = "mm")
ts5 <- fread("mg_locations/tableS5.txt", sep = "\t") %>% as_tibble() %>%
mutate(MG=as.numeric(gsub('M0','',MG)))
G <- ggplot() +
geom_segment(data=filter(ts5,Type=='nrep'),aes(x=Pos,xend=Pos,y=MG-0.2,yend=MG+0.2),size=0.2)+
geom_segment(data=filter(ts5,Type=='rep'),aes(x=Pos,xend=Pos,y=MG-0.2,yend=MG+0.2),col='red')+
geom_point(data=filter(ts5,Type=='rep'),aes(Pos,MG), pch=23,fill='red',size=2)+
scale_x_continuous(breaks= pretty_breaks(n=3), labels = comma)+
scale_y_reverse(breaks=1:6, labels=paste('M0',1:6,sep=''), position = "left")+
labs(x='Position', y='Marker group')+
theme_minimal()+
theme(#axis.text.y = element_text(face='bold',color= c("red", "black", "black", "black", "black", "black")),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
plot.title = element_blank(),
plot.margin = unit(c(0,0,0,0),
"cm"))+
expand_limits(x=c(31450000,31900000))+
NULL
G
ABGDE <- A + B + G + D + E2 + guide_area() + plot_layout(design = "FA#
CED
#B#", guides = "collect")
ABGDE
ggsave('ABGDE7.pdf',
ABGDE,
device = 'pdf',
dpi = 1800,
height = 240,
width = 240,
units = "mm")
FBCDE <- H + B + C + D + E2 + guide_area() + plot_layout(design = "FA#
CED
#B#", guides = "collect")
```
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.