Nothing
##Example
library(crosshap)
#library(patchwork)
"hello" %>% print()
LD <- crosshap::read_LD('~/Desktop/bash_misc/crosshap_data/data/LD_100kb.mtx')
vcf <- crosshap::read_vcf('~/Desktop/bash_misc/crosshap_data/data/impu_100kb_pdh1.vcf')
phen_early <- crosshap::read_pheno('~/Desktop/bash_misc/crosshap_data/data/early_shatter565.txt')
prot <- crosshap::read_pheno('~/Desktop/bash_misc/crosshap_data/data/prot_phen.txt')
##DBscan epsilon values to be tested and compared using clustree visualization
epsilon <- seq(.5,1,by=0.5)
MGmin <- 30
minHap <- 9
crosshap::run_haplotyping(epsilon = epsilon, vcf = vcf, LD = LD, pheno = phen_early, MGmin = MGmin, minHap = minHap, )
##Visualize differences between clusters based on epsilon value input to DBscan
labeled_haptree <- crosshap::run_clustree(MGmin = MGmin, pheno = phen_early, type = "hap")
labeled_MGtree <- crosshap::run_clustree(MGmin = MGmin, pheno = phen_early)
Hap2_viz <- crosshap::crosshap_viz(Haplotypes_MGmin30_E1, plot_left = "pos")
Hap2_labs_viz <- crosshap::crosshap_viz(Haplotypes_MGmin30_E1, hide_labels = F)
#ggplot2::ggsave("botrightlabs.pdf",crosshap_stitched,device = 'pdf',dpi = 300,height = 9,width = 16,units = 'in')
##nonImpu
nonimpu_vcf <- crosshap::read_vcf('~/Desktop/bash_misc/crosshap_data/data/headed_100kb_pdh1.vcf')
vcf <- crosshap::read_vcf('~/Desktop/bash_misc/crosshap_data/data/dummy_test.vcf')
#prot
protLD <- crosshap::read_LD("/Users/jmarsh96/Desktop/bash_misc/crosshap_data/data/labmeeting/LD_173kb.mtx")
prot_phen <- crosshap::read_pheno("/Users/jmarsh96/Desktop/bash_misc/crosshap_data/data/labmeeting/prot_phen.txt")
prot_vcf <- crosshap::read_vcf("/Users/jmarsh96/Desktop/bash_misc/crosshap_data/data/labmeeting/fin_b51_173kb_only.vcf")
metadata <- crosshap::read_metadata('/Users/jmarsh96/Desktop/bash_misc/crosshap_data/data/labmeeting/namepopfile.txt')
eps <- seq(.2,1,by=.2)
crosshap::run_haplotyping(vcf = prot_vcf,
LD = protLD,
pheno = prot_phen,
metadata = metadata,
MGmin = 30, minHap = 9
)
prot_clustree <- crosshap::run_clustree(epsilon = eps,
MGmin = 30,
pheno = prot_phen,
type = 'hap')
prot_viz <- crosshap::crosshap_viz(Haplotypes_MGmin30_E0.6, hide_labels = F, plot_right = "cluster")
posplot_prot_viz <- crosshap_viz(Haplotypes_MGmin29_E1, hide_labels = F, plot_left = "pos", plot_right = "cluster")
hdbposplot_prot_viz <- crosshap_viz(Haplotypes_MGmin30_EX, hide_labels = F, plot_left = "pos", plot_right = "cluster")
run_hdbscan_haplotyping(vcf = prot_vcf,
LD = protLD,
pheno = prot_phen,
metadata = metadata,
MGmin = 30,
minHap =9,
keep_outliers = F
)
hdbposplot_prot_viz <- crosshap_viz(Haplotypes_MGmin30_HDBSCAN, hide_labels = F, plot_left = "allele", plot_right = "cluster")
run_haplotyping(vcf = prot_vcf,
LD = protLD,
pheno = prot_phen,
metadata = metadata,
epsilon = eps,
MGmin = 30,
minHap = 9,
)
posplot_prot_viz <- crosshap_viz(Haplotypes_MGmin30_E1, hide_labels = F, plot_left = "allele", plot_right = "cluster")
tprot <- tsne(protLD)
pca_protLD <- prcomp(protLD)
tprot_labeled <- tprot %>% rename("X" = "V3", "Y" = "V4","ID" = "POS") %>% mutate(Y = as.numeric(Y), X = as.numeric(X))
tsne_prot_MG40_E2 <- Haplotypes_MGmin30_E0.6$MGfile %>% select(-POS) %>% left_join(tprot_labeled)
ggplot(Haplotypes_MGmin40_E2.5$MGfile %>% select(-POS) %>%
left_join(tprot_labeled), aes(X, Y)) +
geom_point(aes(colour = factor(cluster)))
dbE1 <- build_right_clusterplot(Haplotypes_MGmin30_E0.6, hide_labels = T)
Haplotypes_MGmin30_E1$MGfile %>% group_by(MGs) %>% summarise(groupvar = var(meanr2),
count = length(x = POS))
hdb <- build_right_clusterplot(Haplotypes_MGmin30_HDBSCAN, hide_labels = T)
Haplotypes_MGmin30_HDBSCAN$MGfile %>% group_by(MGs) %>% summarise(groupvar = var(meanr2),
count = length(x = POS))
Haplotypes_MGmin30_E1$MGfile %>% group_by(MGs) %>%
# filter(!(abs(meanr2 - median(meanr2)) > 2*sd(meanr2))) %>%
summarise_each(mean, meanr2)
Haplotypes_MGmin30_E0.4$MGfile %>% group_by(MGs) %>%
# filter(!(abs(meanr2 - median(meanr2)) > 2*sd(meanr2))) %>%
summarise_each(mean, meanr2)
df1 = df %>%
group_by(element) %>%
filter(!(abs(value - median(value)) > 2*sd(value))) %>%
summarise_each(funs(mean), value)
dbE1 <- build_right_clusterplot(Haplotypes_MGmin30_E0.4, hide_labels = T)
smoothed <- build_right_clusterplot(Haplotypes_MGmin30_E0.4, hide_labels = T)
smoothed <- build_right_clusterplot(Haplotypes_MGmin30_HDBSCAN, hide_labels = T)
outs_jit
noouts_jit
umap_in <- umap::umap(LD, min_dist = 2, spread = 2.5, n_neighbors = MGmin)
pre_anim_gg <- prepare_umap(umap_in,
HapObject = Haplotypes_MGmin30_E0.6,
vcf = vcf,
nsamples = 25)
hap_gganim <- pre_anim_gg +
facet_wrap(~hap)+
transition_states(Frame,
transition_length = 0,
state_length = 1)
anim <- animate(
hap_gganim,
renderer = gifski_renderer(),
fps = 3,
width = 6,
height = 6,
units = "in",
dpi = 300
)
anim_save("hap_anim_cols.gif", anim)
layout <- "DAE
FFF"
#base::message(paste0("Stitching plots"))
crosshap_stitched <-
patchwork::wrap_plots(mid, left, right) +
patchwork::guide_area() +
patchwork::plot_layout(design = layout, guides = "collect")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.