Nothing
sdm.fit <- function(data,R=list(),formula=NULL,area=NULL,reference="auto",standardize=TRUE,integrator="MonteCarlo",error=0.01,max.mem="1 Gb",interpolate=TRUE,trace=TRUE,...)
{
UD <- sdm.UD(data)
rsf.fit(data,UD=UD,R=R,fomula=formula,integrated=is.null(area),level.UD=area,reference=reference,smooth=FALSE,standardize=standardize,integrator=integrator,error=error,max.mem=max.mem,interpolate=interpolate,trace=trace,...)
}
sdm.select <- function(data,R=list(),formula=NULL,area=NULL,verbose=FALSE,IC="AICc",trace=TRUE,...)
{
UD <- sdm.UD(data)
rsf.select(data,UD=UD,R=R,formula=formula,integrated=is.null(area),level.UD=area,verbose=verbose,IC=IC,trace=trace,smooth=FALSE,...)
}
sdm.UD <- function(data,res=10)
{
# GUESS <- ctmm(tau=NULL,isotropic=TRUE)
# CTMM <- ctmm.select(data,GUESS)
CTMM <- ctmm.fit(data,ctmm(isotropic=TRUE,tau=NULL))
UD <- list()
UD$weights <- rep(1,nrow(data))
UD$DOF.area <- nrow(data) - 1
UD$dr <- sqrt( c(x=CTMM$sigma['x','x'],y=CTMM$sigma['y','y']) ) / res
UD <- new.UD(UD,CTMM=CTMM)
return(UD)
}
sdm.integrate <- function(biased=NULL,bias=NULL,unbiased=NULL)
{
PAR <- NULL
copy.beta <- function(beta)
{
BETA <- numeric(length(PAR))
names(BETA) <- PAR
BETA[names(beta)] <- beta
return(BETA)
}
copy.PRE <- function(pre)
{
PRE <- matrix(0,length(PAR),length(PAR))
dimnames(PRE) <- list(PAR,PAR)
PRE[rownames(pre),colnames(pre)] <- pre
return(PRE)
}
if(!is.null(biased) && !is.null(bias))
{
biased.beta <- biased$beta
PAR <- names(biased.beta)
biased.COV <- biased$COV[PAR,PAR]
# precision matrix
biased.PRE <- PDsolve(biased.COV)
bias.beta <- bias$beta
PAR <- names(bias.beta)
bias.COV <- bias$COV[PAR,PAR]
bias.PRE <- PDsolve(bias.COV)
PAR <- unique(c(names(biased.beta),names(bias.beta)))
biased.beta <- copy.beta(biased.beta)
bias.beta <- copy.beta(bias.beta)
biased.PRE <- copy.PRE(biased.PRE)
bias.PRE <- copy.PRE(bias.PRE)
debiased.beta <- biased.beta - bias.beta
debiased.PRE <- biased.PRE + bias.PRE
# just in case this is everything
beta <- debiased.beta
COV <- PDsolve(debiased.PRE)
}
else
{
debiased.PRE <- NULL
debiased.beta <- NULL
}
if(!is.null(unbiased))
{
if(class(unbiased)[1]=="list")
{
unbiased <- mean(unbiased)
# mean pop?
}
unbiased.beta <- unbiased$beta
PAR <- names(unbiased.beta)
unbiased.COV <- unbiased$COV[PAR,PAR]
unbiased.PRE <- PDsolve(unbiased.COV)
PAR <- unique(c(names(debiased.beta),names(bias.beta)))
debiased.beta <- copy.beta(debiased.beta)
unbiased.beta <- copy.beta(unbiased.beta)
debiased.PRE <- copy.PRE(debiased.PRE)
unbiased.PRE <- copy.PRE(unbiased.PRE)
PRE <- debiased.PRE + unbiased.PRE
COV <- PDsolve(PRE)
beta <- c( debiased.PRE %*% COV %*% debiased.beta + unbiased.PRE %*% COV %*% unbiased.beta )
names(beta) <- PAR
}
# package into ctmm format
M <- ctmm(beta=beta,COV=COV)
# finish mu, sigma later
return(M)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.