fpcat | R Documentation |
Performs functional principal component analysis of probability densities in order to describe a data “foldert”, consisting of individuals on which are observed p
variables on T
times. It returns an object of class fpcat
.
fpcat(xf, group.name="time", method = 1, ind = 1, nvar = NULL, gaussiand = TRUE,
windowh = NULL, normed=TRUE, centered=TRUE, data.centered = FALSE,
data.scaled = FALSE, common.variance = FALSE, nb.factors = 3, nb.values = 10,
sub.title = "", plot.eigen = TRUE, plot.score = FALSE, nscore = 1:3,
filename = NULL)
xf |
object of class
|
group.name |
string or numeric.
|
method |
if If
|
ind |
if The name of the column of x containing the indentifiers of the measured objects, or the number of this column.
See the |
nvar |
if The number of variable measured at each observation time.
See the |
All other arguments are the same as for fpcad
.
gaussiand |
logical. If |
windowh |
either a list of |
normed |
logical. If |
centered |
logical. If |
data.centered |
logical. If |
data.scaled |
logical. If |
common.variance |
logical. If |
nb.factors |
numeric. Number of returned principal scores (default Warning: The |
nb.values |
numerical. Number of returned eigenvalues (default |
sub.title |
string. Subtitle for the graphs (default |
plot.eigen |
logical. If |
plot.score |
logical. If |
nscore |
numeric vector. If |
filename |
string. Name of the file in which the results are saved. By default ( |
The T
probability densities f_t
corresponding to the T
times of observation are either parametrically estimated or estimated using the Gaussian kernel method (see fpcad
for the use of the arguments indicating the method used to estimate these densities).
Returns an object of class fpcat
, that is a list including:
times |
vector of the times of observation. |
inertia |
data frame of the eigenvalues and percentages of inertia. |
contributions |
data frame of the contributions to the first |
qualities |
data frame of the qualities on the first |
scores |
data frame of the first |
norm |
vector of the |
means |
list of the means. |
variances |
list of the covariance matrices. |
correlations |
list of the correlation matrices. |
skewness |
list of the skewness coefficients. |
kurtosis |
list of the kurtosis coefficients. |
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard
Boumaza, R. (1998). Analyse en composantes principales de distributions gaussiennes multidimensionnelles. Revue de Statistique Appliqu?e, XLVI (2), 5-20.
Boumaza, R., Yousfi, S., Demotes-Mainard, S. (2015). Interpreting the principal component analysis of multivariate density functions. Communications in Statistics - Theory and Methods, 44 (16), 3321-3339.
Delicado, P. (2011). Dimensionality reduction when data are density functions. Computational Statistics & Data Analysis, 55, 401-420.
Yousfi, S., Boumaza, R., Aissani, D., Adjabi, S. (2014). Optimal bandwith matrices in functional principal component analysis of density functions. Journal of Statistical Computation and Simulation, 85 (11), 2315-2330.
print.fpcat, plot.fpcat, bandwidth.parameter
times <- as.Date(c("2017-03-01", "2017-04-01", "2017-05-01", "2017-06-01"))
x1 <- data.frame(z1=rnorm(6,1,5), z2=rnorm(6,3,3))
x2 <- data.frame(z1=rnorm(6,4,6), z2=rnorm(6,5,2))
x3 <- data.frame(z1=rnorm(6,7,2), z2=rnorm(6,8,4))
x4 <- data.frame(z1=rnorm(6,9,3), z2=rnorm(6,10,2))
ft <- foldert(x1, x2, x3, x4, times = times, rows.select="intersect")
print(ft)
result <- fpcat(ft)
print(result)
plot(result)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.