View source: R/matddhellinger.R
matddhellinger | R Documentation |
Computes the matrix of the Hellinger (or Matusita) distances between several multivariate or univariate discrete probability distributions, estimated from samples.
matddhellinger(x)
x |
object of class |
Positive symmetric matrix whose order is equal to the number of data frames (or distributions), consisting of the pairwise Hellinger distances between the distributions.
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard
Deza, M.M. and Deza E. (2013). Encyclopedia of distances. Springer.
ddhellinger
.
matddhellingerpar
for discrete probability densities, given the probabilities on the same support.
# Example 1
x1 <- data.frame(x = factor(c("A", "A", "B", "B")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")))
x3 <- data.frame(x = factor(c("A", "A", "B", "B", "B", "B")))
xf <- folder(x1, x2, x3)
matddhellinger(xf)
# Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B", "B")),
y = factor(c("a", "a", "a", "b", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
y = factor(c("a", "a", "b", "a", "b")))
x3 <- data.frame(x = factor(c("A", "A", "B", "B", "B", "B")),
y = factor(c("a", "b", "a", "b", "a", "b")))
xf <- folder(x1, x2, x3)
matddhellinger(xf)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.