View source: R/prep_prepare_dataframes.R
| prep_prepare_dataframes | R Documentation |
This function ensures, that a data frame ds1 with suitable variable
names study_data and meta_data exist as base data.frames.
prep_prepare_dataframes(
.study_data,
.meta_data,
.label_col,
.replace_hard_limits,
.replace_missings,
.sm_code = NULL,
.allow_empty = FALSE,
.adjust_data_type = TRUE,
.amend_scale_level = TRUE,
.apply_factor_metadata = FALSE,
.apply_factor_metadata_inadm = FALSE,
.internal = rlang::env_inherits(rlang::caller_env(), parent.env(environment()))
)
.study_data |
if provided, use this data set as study_data |
.meta_data |
if provided, use this data set as meta_data |
.label_col |
if provided, use this as label_col |
.replace_hard_limits |
replace |
.replace_missings |
replace missing codes, defaults to |
.sm_code |
missing code for |
.allow_empty |
allow |
.adjust_data_type |
ensure that the data type of variables in the study data corresponds to their data type specified in the metadata |
.amend_scale_level |
ensure that |
.apply_factor_metadata |
logical convert categorical variables to labeled factors. |
.apply_factor_metadata_inadm |
logical convert categorical variables
to labeled factors keeping
inadmissible values. Implies, that
.apply_factor_metadata will be set
to |
.internal |
logical internally called, modify caller's environment. |
This function defines ds1 and modifies study_data and meta_data in the
environment of its caller (see eval.parent). It also defines or modifies
the object label_col in the calling environment. Almost all functions
exported by dataquieR call this function initially, so that aspects common
to all functions live here, e.g. testing, if an argument meta_data has been
given and features really a data.frame. It verifies the existence of
required metadata attributes (VARATT_REQUIRE_LEVELS). It can also replace
missing codes by NAs, and calls prep_study2meta to generate a minimum
set of metadata from the study data on the fly (should be amended, so
on-the-fly-calling is not recommended for an instructive use of dataquieR).
The function also detects tibbles, which are then converted to base-R
data.frames, which are expected by dataquieR.
If .internal is TRUE, differently from the other utility function that
work in their caller's environment, this function modifies objects in the
calling function's environment. It defines a new object ds1,
it modifies study_data and/or meta_data
and label_col.
ds1 the study data with mapped column names, invisible(), if
not .internal
acc_margins
## Not run:
acc_test1 <- function(resp_variable, aux_variable,
time_variable, co_variables,
group_vars, study_data, meta_data) {
prep_prepare_dataframes()
invisible(ds1)
}
acc_test2 <- function(resp_variable, aux_variable,
time_variable, co_variables,
group_vars, study_data, meta_data, label_col) {
ds1 <- prep_prepare_dataframes(study_data, meta_data)
invisible(ds1)
}
environment(acc_test1) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
environment(acc_test2) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
acc_test3 <- function(resp_variable, aux_variable, time_variable,
co_variables, group_vars, study_data, meta_data,
label_col) {
prep_prepare_dataframes()
invisible(ds1)
}
acc_test4 <- function(resp_variable, aux_variable, time_variable,
co_variables, group_vars, study_data, meta_data,
label_col) {
ds1 <- prep_prepare_dataframes(study_data, meta_data)
invisible(ds1)
}
environment(acc_test3) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
environment(acc_test4) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
meta_data <- prep_get_data_frame("meta_data")
study_data <- prep_get_data_frame("study_data")
try(acc_test1())
try(acc_test2())
acc_test1(study_data = study_data)
try(acc_test1(meta_data = meta_data))
try(acc_test2(study_data = 12, meta_data = meta_data))
print(head(acc_test1(study_data = study_data, meta_data = meta_data)))
print(head(acc_test2(study_data = study_data, meta_data = meta_data)))
print(head(acc_test3(study_data = study_data, meta_data = meta_data)))
print(head(acc_test3(study_data = study_data, meta_data = meta_data,
label_col = LABEL)))
print(head(acc_test4(study_data = study_data, meta_data = meta_data)))
print(head(acc_test4(study_data = study_data, meta_data = meta_data,
label_col = LABEL)))
try(acc_test2(study_data = NULL, meta_data = meta_data))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.