Nothing
#' @title Cosine Kernel
#'
#' @description Mathematical and statistical functions for the Cosine kernel defined by the pdf,
#' \deqn{f(x) = (\pi/4)cos(x\pi/2)}
#' over the support \eqn{x \in (-1,1)}{x \epsilon (-1,1)}.
#'
#' @name Cosine
#' @template class_distribution
#' @template class_kernel
#' @template method_pdfsquared2Norm
#'
#' @export
Cosine <- R6Class("Cosine",
inherit = Kernel, lock_objects = F,
public = list(
name = "Cosine",
short_name = "Cos",
description = "Cosine Kernel",
#' @description
#' The squared 2-norm of the pdf is defined by
#' \deqn{\int_a^b (f_X(u))^2 du}
#' where X is the Distribution, \eqn{f_X} is its pdf and \eqn{a, b}
#' are the distribution support limits.
pdfSquared2Norm = function(x = 0, upper = Inf) {
xl <- length(x)
ul <- length(upper)
len <- max(xl, ul)
ret <- numeric(len)
for (i in seq(len)) {
xi <- x[ifelse(i %% xl == 0, xl, i %% xl)]
ui <- upper[ifelse(i %% ul == 0, ul, i %% ul)]
if (abs(xi >= 2)) {
ret[i] <- 0
} else if (xi >= 0 & xi <= 2) {
if (ui == Inf | ui >= 1) {
ret[i] <- (pi / 32) * (2 * sin((pi * xi) / 2) - (xi - 2) * pi * cos(pi * xi / 2))
} else if (ui >= (xi - 1) & ui <= 1) {
ret[i] <- (pi) / (32) * (-sin(((pi) * xi - 2 * pi * ui) / (2)) +
sin(((pi) * xi) / (2)) -
(pi * xi - pi * ui - pi) * cos((pi * xi) / (2)))
} else if (ui <= xi - 1) {
ret[i] <- 0
}
} else if (xi <= 0 & xi >= -2) {
if (ui == Inf | ui >= xi + 1) {
ret[i] <- (pi) / (32) * (-2 * sin((pi * xi) / (2)) +
(xi + 2) * pi * cos((pi * xi) / (2)))
} else if (ui <= xi + 1 & ui >= -1) {
ret[i] <- (pi) / (32) * (-sin((pi * xi - 2 * pi * ui) / (2)) +
sin((pi * xi) / (2)) +
(pi * ui + pi) * cos((pi * xi) / (2)))
} else if (ui <= -1) {
ret[i] <- 0
}
}
}
return(ret)
},
#' @description
#' The squared 2-norm of the cdf is defined by
#' \deqn{\int_a^b (F_X(u))^2 du}
#' where X is the Distribution, \eqn{F_X} is its pdf and \eqn{a, b}
#' are the distribution support limits.
cdfSquared2Norm = function(x = 0, upper = 0) {
xl <- length(x)
ul <- length(upper)
len <- max(xl, ul)
ret <- numeric(len)
for (i in seq(len)) {
xi <- x[ifelse(i %% xl == 0, xl, i %% xl)]
ui <- upper[ifelse(i %% ul == 0, ul, i %% ul)]
if (xi >= 0 & xi <= 2) {
if (ui <= -1) {
ret[i] <- 0
} else if (ui >= -1 & ui <= xi - 1) {
ret[i] <- 0
} else if (ui >= xi - 1 & ui <= 1) {
ret[i] <- (1 / (8 * pi)) *
(2 * pi + 2 * ui * pi - 2 * xi * pi - 4 * cos((ui * pi) / 2) +
(1 + ui - xi) * pi * cos((xi * pi) / 2) -
4 * cos((1 / 2) * (-ui + xi) * pi) +
3 * sin((xi * pi) / 2) + sin((1 / 2) * (-2 * ui + xi) * pi))
} else if (ui >= 1 & ui <= xi + 1) {
ret[i] <- (2 * (sin((pi * xi) / 2) - cos((pi * (xi - ui)) / 2))) / pi -
sin((pi * xi) / 2) / (4 * pi) -
((xi - 2) * (cos((pi * xi) / 2) + 2)) / 8 + ui - 1 / 2
} else if (ui >= xi + 1) {
ret[i] <- (6 * sin((pi * xi) / 2) - pi * ((xi - 2) * cos((pi * xi) / 2) +
6 * xi - 8 * ui + 4)) / (8 * pi)
}
} else if (xi >= -2 & xi <= 0) {
if (ui <= xi - 1) {
ret[i] <- 0
} else if (ui >= xi - 1 & ui <= - 1) {
ret[i] <- 0
} else if (ui >= - 1 & ui <= xi + 1) {
ret[i] <- (-4 * cos((pi * (xi - ui)) / 2) +
sin((pi * (xi - 2 * ui)) / 2) -
3 * sin((pi * xi) / 2) + pi * (ui + 1) *
cos((pi * xi) / 2) - 4 * cos((pi * ui) / 2) +
2 * pi * ui + 2 * pi) / (8 * pi)
} else if (ui >= xi + 1 & ui <= 1) {
ret[i] <- - (6 * sin((pi * xi) / 2) -
pi * ((xi + 2) * cos((pi * xi) / 2) -
2 * xi + 4 * ui) +
8 * cos((pi * ui) / 2)) / (8 * pi)
} else if (ui >= 1) {
ret[i] <- (sin((pi * xi) / 2) / pi + ((xi + 2) * cos((pi * xi) / 2)) / 2 +
xi + 2) / 4 -
sin((pi * xi) / 2) / pi - xi / 2 + ui - 1
}
} else if (xi >= 2) {
if (ui <= -1) {
ret[i] <- 0
} else if (ui >= -1 & ui <= 1) {
ret[i] <- 0
} else if (ui >= 1 & ui <= xi - 1) {
ret[i] <- 0
} else if (ui >= xi - 1 & ui <= xi + 1) {
ret[i] <- (- (2 * cos((pi * (xi - ui)) / 2)) / pi - xi + ui + 1) / 2
} else if (ui >= xi + 1) {
ret[i] <- ui - xi
}
} else if (xi <= -2) {
if (ui <= xi - 1) {
ret[i] <- 0
} else if (ui >= xi - 1 & ui <= xi + 1) {
ret[i] <- 0
} else if (ui >= xi + 1 & ui <= -1) {
ret[i] <- 0
} else if (ui >= -1 & ui <= 1) {
ret[i] <- (- (2 * cos((pi * ui) / 2)) / pi + ui + 1) / 2
} else if (ui >= 1) {
ret[i] <- ui
}
}
}
return(ret)
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
return(1 - 8 / (pi^2))
}
),
private = list(
.pdf = function(x, log = FALSE) {
C_CosineKernelPdf(x, log)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
C_CosineKernelCdf(x, lower.tail, log.p)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
C_CosineKernelQuantile(p, lower.tail, log.p)
}
)
)
.distr6$kernels <- rbind(
.distr6$kernels,
data.table::data.table(
ShortName = "Cos", ClassName = "Cosine",
Support = "[-1,1]", Packages = "-"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.