Nothing
# nolint start
#' @name Bernoulli
#' @template SDist
#'
#' @templateVar ClassName Bernoulli
#' @templateVar DistName Bernoulli
#' @templateVar uses to model a two-outcome scenario
#' @templateVar params probability of success, \eqn{p},
#' @templateVar pdfpmf pmf
#' @templateVar pdfpmfeq \deqn{f(x) = p, \ if \ x = 1}{f(x) = p, if x = 1}\deqn{f(x) = 1 - p, \ if \ x = 0}{f(x) = 1 - p, if x = 0}
#' @templateVar paramsupport probability \eqn{p}
#' @templateVar distsupport \eqn{\{0,1\}}{{0,1}}
#' @templateVar default prob = 0.5
# nolint end
#' @template param_prob
#' @template param_qprob
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template field_packages
#'
#' @family discrete distributions
#' @family univariate distributions
#'
#' @export
Bernoulli <- R6Class("Bernoulli",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Bernoulli",
short_name = "Bern",
description = "Bernoulli Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(prob = NULL, qprob = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Set$new(0, 1, class = "integer"),
type = Naturals$new(),
symmetry = "sym"
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
unlist(self$getParameterValue("prob"))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
prob <- unlist(self$getParameterValue("prob"))
if (length(prob) > 1) {
if (which == "all") {
stop("`which` cannot be `'all'` when vectorising.")
} else {
mode <- numeric(length(prob))
mode[prob < 0.5] <- 0
mode[prob > 0.5] <- 1
mode[prob == 0.5] <- c(0, 1)[which]
}
} else {
if (prob < 0.5) {
mode <- 0
} else if (prob > 0.5) {
mode <- 1
} else {
if (which == "all") {
mode <- c(0, 1)
} else {
mode <- c(0, 1)[which]
}
}
}
return(mode)
},
#' @description
#' Returns the median of the distribution. If an analytical expression is available
#' returns distribution median, otherwise if symmetric returns `self$mean`, otherwise
#' returns `self$quantile(0.5)`.
median = function() {
prob <- self$getParameterValue("prob")
median <- numeric(length(prob))
median[prob < 0.5] <- 0
median[prob > 0.5] <- 1
median[prob == 0.5] <- NaN
return(median)
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
unlist(self$getParameterValue("prob")) * unlist(self$getParameterValue("qprob"))
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
(1 - (2 * unlist(self$getParameterValue("prob")))) / self$stdev()
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
exkurtosis <- (1 - (6 * unlist(self$getParameterValue("prob")) *
unlist(self$getParameterValue("qprob")))) / self$variance()
if (excess) {
return(exkurtosis)
} else {
return(exkurtosis + 3)
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
prob <- unlist(self$getParameterValue("prob"))
qprob <- 1 - prob
return((-qprob * log(qprob, base)) + (-prob * log(prob, base)))
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
prob <- self$getParameterValue("prob")
qprob <- 1 - prob
qprob + (prob * exp(t))
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
prob <- self$getParameterValue("prob")
qprob <- 1 - prob
qprob + (prob * exp(1i * t))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
prob <- self$getParameterValue("prob")
qprob <- 1 - prob
return(qprob + (prob * z))
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
prop <- super$properties
prop$symmetry <- if (self$getParameterValue("prob") == 0.5) {
"symmetric"
} else {
"asymmetric"
}
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
prob <- self$getParameterValue("prob")
call_C_base_pdqr(
fun = "dbinom",
x = x,
args = list(
size = 1,
prob = unlist(prob)
),
log = log,
vec = test_list(prob)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
prob <- self$getParameterValue("prob")
call_C_base_pdqr(
fun = "pbinom",
x = x,
args = list(
size = 1,
prob = unlist(prob)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(prob)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
prob <- self$getParameterValue("prob")
call_C_base_pdqr(
fun = "qbinom",
x = p,
args = list(
size = 1,
prob = unlist(prob)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(prob)
)
},
.rand = function(n) {
prob <- self$getParameterValue("prob")
call_C_base_pdqr(
fun = "rbinom",
x = n,
args = list(
size = 1,
prob = unlist(prob)
),
vec = test_list(prob)
)
},
# traits
.traits = list(valueSupport = "discrete", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Bern", ClassName = "Bernoulli",
Type = "\u21150", ValueSupport = "discrete",
VariateForm = "univariate",
Package = "stats", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.