Nothing
#' @name Beta
#' @template SDist
#' @templateVar ClassName Beta
#' @templateVar DistName Beta
#' @templateVar uses as the prior in Bayesian modelling
#' @templateVar params two shape parameters, \eqn{\alpha, \beta},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = (x^{\alpha-1}(1-x)^{\beta-1}) / B(\alpha, \beta)}
#' @templateVar paramsupport \eqn{\alpha, \beta > 0}, where \eqn{B} is the Beta function
#' @templateVar distsupport \eqn{[0, 1]}
#' @templateVar default shape1 = 1, shape2 = 1
#'
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Beta <- R6Class("Beta",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Beta",
short_name = "Beta",
description = "Beta Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param shape1 `(numeric(1))`\cr
#' First shape parameter, `shape1 > 0`.
#' @param shape2 `(numeric(1))`\cr
#' Second shape parameter, `shape2 > 0`.
initialize = function(shape1 = NULL, shape2 = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Interval$new(0, 1),
type = PosReals$new(zero = T),
symmetry = "sym"
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
s1 <- unlist(self$getParameterValue("shape1"))
s2 <- unlist(self$getParameterValue("shape2"))
return(s1 / (s1 + s2))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
s1 <- unlist(self$getParameterValue("shape1"))
s2 <- unlist(self$getParameterValue("shape2"))
if (length(s1) > 1) {
if (which == "all") {
stop("`which` cannot be `'all'` when vectorising.")
} else {
mode <- rep(NaN, length(s1))
mode[s1 <= 1 & s2 > 1] <- 0
mode[s1 > 1 & s2 <= 1] <- 1
mode[s1 < 1 & s2 < 1] <- c(0, 1)[which]
mode[s1 > 1 & s2 > 1] <- (s1 - 1) / (s1 + s2 - 2)
return(mode)
}
} else {
if (s1 <= 1 & s2 > 1) {
return(0)
} else if (s1 > 1 & s2 <= 1) {
return(1)
} else if (s1 < 1 & s2 < 1) {
if (which == "all") {
return(c(0, 1))
} else {
return(c(0, 1)[which])
}
} else if (s1 > 1 & s2 > 1) {
return((s1 - 1) / (s1 + s2 - 2))
} else {
return(NaN)
}
}
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
shape1 <- unlist(self$getParameterValue("shape1"))
shape2 <- unlist(self$getParameterValue("shape2"))
return(shape1 * shape2 * ((shape1 + shape2)^-2) * (shape1 + shape2 + 1)^-1)
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
shape1 <- unlist(self$getParameterValue("shape1"))
shape2 <- unlist(self$getParameterValue("shape2"))
return(2 * (shape2 - shape1) * ((shape1 + shape2 + 1)^0.5) * ((shape1 + shape2 + 2)^-1) *
((shape1 * shape2)^-0.5))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
shape1 <- unlist(self$getParameterValue("shape1"))
shape2 <- unlist(self$getParameterValue("shape2"))
ex_kurtosis <- 6 *
{
((shape1 - shape2)^2) * (shape1 + shape2 + 1) - (shape1 * shape2 * (shape1 + shape2 + 2))
} /
(shape1 * shape2 * (shape1 + shape2 + 2) * (shape1 + shape2 + 3))
if (excess) {
return(ex_kurtosis)
} else {
return(ex_kurtosis + 3)
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
shape1 <- unlist(self$getParameterValue("shape1"))
shape2 <- unlist(self$getParameterValue("shape2"))
return(log(beta(shape1, shape2), base) - ((shape1 - 1) * digamma(shape1)) -
((shape2 - 1) * digamma(shape2)) + ((shape1 + shape2 - 2) * digamma(shape1 + shape2)))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
prop <- super$properties
prop$symmetry <- if (self$getParameterValue("shape1") ==
self$getParameterValue("shape2")) {
"symmetric"
} else {
"asymmetric"
}
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
shape1 <- self$getParameterValue("shape1")
shape2 <- self$getParameterValue("shape2")
call_C_base_pdqr(
fun = "dbeta",
x = x,
args = list(
shape1 = unlist(shape1),
shape2 = unlist(shape2)
),
log = log,
vec = test_list(shape1)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
shape1 <- self$getParameterValue("shape1")
shape2 <- self$getParameterValue("shape2")
call_C_base_pdqr(
fun = "pbeta",
x = x,
args = list(
shape1 = unlist(shape1),
shape2 = unlist(shape2)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(shape1)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
shape1 <- self$getParameterValue("shape1")
shape2 <- self$getParameterValue("shape2")
call_C_base_pdqr(
fun = "qbeta",
x = p,
args = list(
shape1 = unlist(shape1),
shape2 = unlist(shape2)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(shape1)
)
},
.rand = function(n) {
shape1 <- self$getParameterValue("shape1")
shape2 <- self$getParameterValue("shape2")
call_C_base_pdqr(
fun = "rbeta",
x = n,
args = list(
shape1 = unlist(shape1),
shape2 = unlist(shape2)
),
vec = test_list(shape1)
)
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Beta", ClassName = "Beta",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "stats", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.