Nothing
# nolint start
#' @name Categorical
#' @template SDist
#' @templateVar ClassName Categorical
#' @templateVar DistName Categorical
#' @templateVar uses in classification supervised learning
#' @templateVar params a given support set, \eqn{x_1,...,x_k}, and respective probabilities, \eqn{p_1,...,p_k},
#' @templateVar pdfpmf pmf
#' @templateVar pdfpmfeq \deqn{f(x_i) = p_i}
#' @templateVar paramsupport \eqn{p_i, i = 1,\ldots,k; \sum p_i = 1}
#' @templateVar distsupport \eqn{x_1,...,x_k}
#' @templateVar default elements = 1, probs = 1
#' @details
#' Sampling from this distribution is performed with the [sample] function with the elements given
#' as the support set and the probabilities from the `probs` parameter. The cdf and quantile assumes
#' that the elements are supplied in an indexed order (otherwise the results are meaningless).
#'
#' The number of points in the distribution cannot be changed after construction.
#'
# nolint end
#
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#'
#' @family discrete distributions
#' @family univariate distributions
#'
#' @export
Categorical <- R6Class("Categorical",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Categorical",
short_name = "Cat",
description = "Categorical Probability Distribution.",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param elements `list()`\cr
#' Categories in the distribution, see examples.
#' @param probs `numeric()`\cr
#' Probabilities of respective categories occurring.
#'
#' @examples
#' # Note probabilities are automatically normalised (if not vectorised)
#' x <- Categorical$new(elements = list("Bapple", "Banana", 2), probs = c(0.2, 0.4, 1))
#'
#' # Length of elements and probabilities cannot be changed after construction
#' x$setParameterValue(probs = c(0.1, 0.2, 0.7))
#'
#' # d/p/q/r
#' x$pdf(c("Bapple", "Carrot", 1, 2))
#' x$cdf("Banana") # Assumes ordered in construction
#' x$quantile(0.42) # Assumes ordered in construction
#' x$rand(10)
#'
#' # Statistics
#' x$mode()
#'
#' summary(x)
initialize = function(elements = NULL, probs = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Set$new(1),
type = Universal$new(),
symmetry = "sym"
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
p <- self$getParameterValue("probs")
if (checkmate::testList(p)) {
return(rep(NaN, length(p)))
} else {
return(NaN)
}
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
probs <- self$getParameterValue("probs")
els <- self$getParameterValue("elements")
if (!checkmate::testList(probs)) {
modes <- unlist(els[probs == max(probs)])
if (which == "all") {
return(modes)
} else {
return(modes[which])
}
} else {
if (which == "all") {
stop("`which` cannot be `'all'` when vectorising.")
} else {
modes <- c()
for (i in seq_along(probs)) {
m <- (els[[i]][probs[[i]] == max(probs[[i]])])
if (which > length(m)) {
m <- m[length(m)]
} else {
m <- m[which]
}
modes <- c(modes, m)
}
return(modes)
}
}
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
p <- self$getParameterValue("probs")
if (checkmate::testList(p)) {
return(rep(NaN, length(p)))
} else {
return(NaN)
}
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
p <- self$getParameterValue("probs")
if (checkmate::testList(p)) {
return(rep(NaN, length(p)))
} else {
return(NaN)
}
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
p <- self$getParameterValue("probs")
if (checkmate::testList(p)) {
return(rep(NaN, length(p)))
} else {
return(NaN)
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
p <- self$getParameterValue("probs")
if (checkmate::testList(p)) {
return(rep(NaN, length(p)))
} else {
return(NaN)
}
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
return(NaN)
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
return(NaN)
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
prop <- super$properties
prop$symmetry <- if (length(unique(self$getParameterValue("probs"))) == 1) {
"symmetric"
} else {
"asymmetric"
}
prop$support <- Set$new(elements = self$getParameterValue("elements"))
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
probs <- self$getParameterValue("probs")
els <- self$getParameterValue("elements")
if (checkmate::testList(probs)) {
probs <- matrix(unlist(probs), nrow = length(probs[[1]]), ncol = length(probs))
els <- matrix(unlist(els), ncol = ncol(probs))
pdf <- matrix(nrow = length(x), ncol = ncol(probs))
for (i in seq(ncol(probs))) {
els_ind <- seq_along(els[, i])
new_x <- match(x, els[, i])
pdf[, i] <- .wd_pdf(new_x, els_ind, probs[, i], log)
}
pdf
} else {
els_ind <- seq_along(els)
new_x <- match(x, els)
.wd_pdf(new_x, els_ind, probs, log)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
probs <- self$getParameterValue("probs")
els <- self$getParameterValue("elements")
if (checkmate::testList(probs)) {
probs <- matrix(unlist(probs), nrow = length(probs[[1]]), ncol = length(probs))
els <- matrix(unlist(els), ncol = ncol(probs))
cdf <- matrix(nrow = length(x), ncol = ncol(probs))
for (i in seq(ncol(probs))) {
els_ind <- seq_along(els[, i])
new_x <- match(x, els[, i])
new_cdf <- cumsum(probs[, i])
cdf[, i] <- .wd_cdf(new_x, els_ind, new_cdf, lower.tail, log.p)
}
cdf
} else {
els_ind <- seq_along(els)
new_x <- match(x, els)
cdf <- cumsum(probs)
.wd_cdf(new_x, els_ind, cdf, lower.tail, log.p)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
probs <- self$getParameterValue("probs")
els <- self$getParameterValue("elements")
if (checkmate::testList(probs)) {
probs <- matrix(unlist(probs), nrow = length(probs[[1]]), ncol = length(probs))
new_els <- matrix(unlist(els), ncol = ncol(probs))
quantile <- matrix(nrow = length(p), ncol = ncol(probs))
for (i in seq(ncol(probs))) {
els_ind <- seq_along(new_els[, i])
# new_x <- match(x, els[, i])
new_cdf <- cumsum(probs[, i])
quantile[, i] <- C_WeightedDiscreteQuantile(p, els_ind, new_cdf, lower.tail, log.p)
quantile[, i] <- unlist(els[[i]][quantile[, i]])
}
return(quantile)
} else {
els_ind <- seq_along(els)
cdf <- cumsum(probs)
quantile <- C_WeightedDiscreteQuantile(p, els_ind, cdf, lower.tail, log.p)
return(unlist(els[quantile]))
}
},
.rand = function(n) {
els <- self$getParameterValue("elements")
probs <- self$getParameterValue("probs")
if (checkmate::testList(probs)) {
rand <- matrix(nrow = n, ncol = length(probs))
for (i in seq_along(probs)) {
rand[, i] <- unlist(sample(els[[i]], n, TRUE, probs[[i]]))
}
} else {
rand <- sample(els, n, TRUE, probs)
}
return(rand)
},
# traits
.traits = list(valueSupport = "discrete", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Cat", ClassName = "Categorical",
Type = "V", ValueSupport = "discrete",
VariateForm = "univariate",
Package = "-", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.