Nothing
# nolint start
#' @name DiscreteUniform
#' @template SDist
#' @templateVar ClassName DiscreteUniform
#' @templateVar DistName Discrete Uniform
#' @templateVar uses as a discrete variant of the more popular Uniform distribution, used to model events with an equal probability of occurring (e.g. role of a die)
#' @templateVar params lower, \eqn{a}, and upper, \eqn{b}, limits
#' @templateVar pdfpmf pmf
#' @templateVar pdfpmfeq \deqn{f(x) = 1/(b - a + 1)}
#' @templateVar paramsupport \eqn{a, b \ \in \ Z; \ b \ge a}{a, b \epsilon Z; b \ge a}
#' @templateVar distsupport \eqn{\{a, a + 1,..., b\}}{{a, a + 1,..., b}}
#' @templateVar default lower = 0, upper = 1
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template field_packages
#'
#' @family discrete distributions
#' @family univariate distributions
#'
#' @export
DiscreteUniform <- R6Class("DiscreteUniform",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "DiscreteUniform",
short_name = "DUnif",
description = "Discrete Uniform Probability Distribution.",
packages = "extraDistr",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param lower `(integer(1))`\cr
#' Lower limit of the [Distribution], defined on the Naturals.
#' @param upper `(integer(1))`\cr
#' Upper limit of the [Distribution], defined on the Naturals.
initialize = function(lower = NULL, upper = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Interval$new(0, 1, class = "integer"),
symmetry = "sym",
type = Integers$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
(unlist(self$getParameterValue("lower")) + unlist(self$getParameterValue("upper"))) / 2
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
lower <- self$getParameterValue("lower")
upper <- self$getParameterValue("upper")
if (checkmate::testList(lower)) {
if (which == "all") {
stop("`which` cannot be `'all'` when vectorising.")
}
return(mapply(function(x, y) {
if (which > length(x:y)) {
return(y)
} else {
return((x:y)[which])
}
}, lower, upper))
} else {
if (which == "all") {
return(lower:upper)
} else {
return((lower:upper)[which])
}
}
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
((unlist(self$getParameterValue("upper")) -
unlist(self$getParameterValue("lower")) + 1)^2 - 1) / 12
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
numeric(length(self$getParameterValue("upper")))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
upper <- unlist(self$getParameterValue("upper"))
lower <- unlist(self$getParameterValue("lower"))
N <- upper - lower + 1
exkurtosis <- (-6 * (N^2 + 1)) / (5 * (N^2 - 1))
if (excess) {
return(exkurtosis)
} else {
return(exkurtosis + 3)
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
upper <- unlist(self$getParameterValue("upper"))
lower <- unlist(self$getParameterValue("lower"))
N <- upper - lower + 1
return(log(N, base))
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
upper <- unlist(self$getParameterValue("upper"))
lower <- unlist(self$getParameterValue("lower"))
N <- upper - lower + 1
num <- exp(t * lower) - exp((upper + 1) * t)
denom <- N * (1 - exp(t))
return(num / denom)
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
upper <- unlist(self$getParameterValue("upper"))
lower <- unlist(self$getParameterValue("lower"))
N <- upper - lower + 1
num <- exp(1i * t * lower) - exp((upper + 1) * t * 1i)
denom <- N * (1 - exp(1i * t))
return(num / denom)
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
upper <- unlist(self$getParameterValue("upper"))
lower <- unlist(self$getParameterValue("lower"))
N <- upper - lower + 1
return(1 / N * sum(z^(1:N))) # nolint
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
prop <- super$properties
prop$support <- Interval$new(
self$getParameterValue("lower"),
self$getParameterValue("upper"),
class = "integer"
)
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("lower"))) {
mapply(
extraDistr::ddunif,
min = self$getParameterValue("lower"),
max = self$getParameterValue("upper"),
MoreArgs = list(x = x, log = log)
)
} else {
extraDistr::ddunif(
x,
min = self$getParameterValue("lower"),
max = self$getParameterValue("upper"),
log = log
)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("lower"))) {
mapply(
extraDistr::pdunif,
min = self$getParameterValue("lower"),
max = self$getParameterValue("upper"),
MoreArgs = list(
q = x,
lower.tail = lower.tail,
log.p = log.p
)
)
} else {
extraDistr::pdunif(
x,
min = self$getParameterValue("lower"),
max = self$getParameterValue("upper"),
lower.tail = lower.tail,
log.p = log.p
)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("lower"))) {
mapply(
extraDistr::qdunif,
min = self$getParameterValue("lower"),
max = self$getParameterValue("upper"),
MoreArgs = list(
p = p,
lower.tail = lower.tail,
log.p = log.p
)
)
} else {
extraDistr::qdunif(
p,
min = self$getParameterValue("lower"),
max = self$getParameterValue("upper"),
lower.tail = lower.tail,
log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("lower"))) {
mapply(
extraDistr::rdunif,
min = self$getParameterValue("lower"),
max = self$getParameterValue("upper"),
MoreArgs = list(n = n)
)
} else {
extraDistr::rdunif(
n,
min = self$getParameterValue("lower"),
max = self$getParameterValue("upper")
)
}
},
# traits
.traits = list(valueSupport = "discrete", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "DUnif", ClassName = "DiscreteUniform",
Type = "\u2124", ValueSupport = "discrete",
VariateForm = "univariate",
Package = "extraDistr", Tags = "limits"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.