Nothing
# nolint start
#' @name Logarithmic
#' @template SDist
#' @templateVar ClassName Logarithmic
#' @templateVar DistName Logarithmic
#' @templateVar uses to model consumer purchase habits in economics and is derived from the Maclaurin series expansion of \eqn{-ln(1-p)}
#' @templateVar params a parameter, \eqn{\theta},
#' @templateVar pdfpmf pmf
#' @templateVar pdfpmfeq \deqn{f(x) = -\theta^x/xlog(1-\theta)}
#' @templateVar paramsupport \eqn{0 < \theta < 1}
#' @templateVar distsupport \eqn{{1,2,3,\ldots}}
#' @templateVar default theta = 0.5
# nolint end
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template field_packages
#'
#' @family discrete distributions
#' @family univariate distributions
#'
#' @export
Logarithmic <- R6Class("Logarithmic",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Logarithmic",
short_name = "Log",
description = "Logarithmic Probability Distribution.",
packages = "extraDistr",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param theta `(numeric(1))`\cr
#' Theta parameter defined as a probability between `0` and `1`.
initialize = function(theta = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosNaturals$new(),
type = PosNaturals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
theta <- unlist(self$getParameterValue("theta"))
return(-theta / (log(1 - theta) * (1 - theta)))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
rep(1, length(self$getParameterValue("theta")))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
theta <- unlist(self$getParameterValue("theta"))
return((-theta^2 - theta * log(1 - theta)) / ((1 - theta)^2 * (log(1 - theta))^2))
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
theta <- unlist(self$getParameterValue("theta"))
s1 <- (theta * (3 * theta + theta * log(1 - theta) + log(1 - theta))) /
((theta - 1)^3 * log(1 - theta)^2)
s2 <- 2 * (-theta / (log(1 - theta) * (1 - theta)))^3
return((s1 + s2) / (self$stdev()^3))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
theta <- unlist(self$getParameterValue("theta"))
s1 <- (3 * theta^4) / ((1 - theta)^4 * log(1 - theta)^4)
s2 <- (6 * theta^3) / ((theta - 1)^4 * log(1 - theta)^3)
s3 <- (4 * theta^3) / ((theta - 1)^4 * log(1 - theta)^2)
s4 <- (theta^3) / ((theta - 1)^4 * log(1 - theta))
s5 <- (4 * theta^2) / ((theta - 1)^4 * log(1 - theta)^2)
s6 <- (4 * theta^2) / ((theta - 1)^4 * log(1 - theta))
s7 <- (theta) / ((theta - 1)^4 * log(1 - theta))
sum <- -s1 - s2 - s3 - s4 - s5 - s6 - s7
kurtosis <- sum / (self$stdev()^4)
if (excess) {
return(kurtosis - 3)
} else {
return(kurtosis)
}
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
if (t < -log(self$getParameterValue("theta"))) {
return(log(1 - self$getParameterValue("theta") * exp(t)) /
log(1 - self$getParameterValue("theta")))
} else {
return(NaN)
}
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
return(log(1 - self$getParameterValue("theta") * exp(t * 1i)) /
log(1 - self$getParameterValue("theta")))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
if (abs(z) < 1 / self$getParameterValue("theta")) {
return(log(1 - self$getParameterValue("theta") * z) /
log(1 - self$getParameterValue("theta")))
} else {
return(NaN)
}
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("theta"))) {
mapply(extraDistr::dlgser,
theta = self$getParameterValue("theta"),
MoreArgs = list(x = x, log = log)
)
} else {
extraDistr::dlgser(x, theta = self$getParameterValue("theta"), log = log)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("theta"))) {
mapply(extraDistr::plgser,
theta = self$getParameterValue("theta"),
MoreArgs = list(q = x, lower.tail = lower.tail, log.p = log.p)
)
} else {
extraDistr::plgser(x,
theta = self$getParameterValue("theta"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("theta"))) {
mapply(extraDistr::qlgser,
theta = self$getParameterValue("theta"),
MoreArgs = list(p = p, lower.tail = lower.tail, log.p = log.p)
)
} else {
extraDistr::qlgser(p,
theta = self$getParameterValue("theta"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("theta"))) {
mapply(extraDistr::rlgser,
theta = self$getParameterValue("theta"),
MoreArgs = list(n = n)
)
} else {
extraDistr::rlgser(n, theta = self$getParameterValue("theta"))
}
},
# traits
.traits = list(valueSupport = "discrete", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Log", ClassName = "Logarithmic",
Type = "\u21150", ValueSupport = "discrete",
VariateForm = "univariate",
Package = "extraDistr", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.