Nothing
#' @name Loglogistic
#' @template SDist
#' @templateVar ClassName Loglogistic
#' @templateVar DistName Log-Logistic
#' @templateVar uses in survival analysis for its non-monotonic hazard as well as in economics
#' @templateVar params shape, \eqn{\beta}, and scale, \eqn{\alpha}
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = (\beta/\alpha)(x/\alpha)^{\beta-1}(1 + (x/\alpha)^\beta)^{-2}}
#' @templateVar paramsupport \eqn{\alpha, \beta > 0}
#' @templateVar distsupport the non-negative Reals
#' @templateVar default scale = 1, shape = 1
#' @templateVar aka Fisk
#' @aliases Fisk
#'
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template param_scale
#' @template param_shape
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Loglogistic <- R6Class("Loglogistic",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Loglogistic",
short_name = "LLogis",
description = "Loglogistic Probability Distribution.",
packages = "actuar",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param rate `(numeric(1))`\cr
#' Alternate scale parameter, `rate = 1/scale`. If given then `scale` is ignored.
initialize = function(scale = NULL, shape = NULL, rate = NULL,
decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(zero = T),
type = PosReals$new(zero = T)
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
return((scale * pi / shape) / sin(pi / shape))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
return(scale * ((shape - 1) / (shape + 1))^(1 / shape)) # nolint
},
#' @description
#' Returns the median of the distribution. If an analytical expression is available
#' returns distribution median, otherwise if symmetric returns `self$mean`, otherwise
#' returns `self$quantile(0.5)`.
median = function() {
unlist(self$getParameterValue("scale"))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
shapi <- pi / shape
var <- rep(NaN, length(scale))
var[shape > 2] <- scale[shape > 2]^2 *
((2 * shapi[shape > 2]) / sin(2 * shapi[shape > 2]) - (shapi[shape > 2]^2)
/ sin(shapi[shape > 2])^2)
return(var)
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
shapi <- pi / shape
skew <- rep(NaN, length(scale))
s1 <- (2 * shapi[shape > 3]^3 * scale[shape > 3]^3) / sin(shapi[shape > 3])^3
s2 <- (6 * shapi[shape > 3]^2 * scale[shape > 3]^3) * (1 / sin(shapi[shape > 3])) *
(1 / sin(2 * shapi[shape > 3]))
s3 <- (3 * shapi[shape > 3] * scale[shape > 3]^3) / sin(3 * shapi[shape > 3])
skew[shape > 3] <- s1 - s2 + s3
return(skew)
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
scale <- unlist(self$getParameterValue("scale"))
shape <- unlist(self$getParameterValue("shape"))
shapi <- pi / shape
kurtosis <- rep(NaN, length(scale))
s1 <- (3 * shapi[shape > 4]^4 * scale[shape > 4]^4) / sin(shapi[shape > 4])^4
s2 <- (12 * shapi[shape > 4]^3 * scale[shape > 4]^4) *
(1 / sin(shapi[shape > 4])^2) * (1 / sin(2 * shapi[shape > 4]))
s3 <- (12 * shapi[shape > 4]^2 * scale[shape > 4]^4) * (1 / sin(shapi[shape > 4])) *
(1 / sin(3 * shapi[shape > 4]))
s4 <- (4 * shapi[shape > 4] * scale[shape > 4]^4) * (1 / sin(4 * shapi[shape > 4]))
kurtosis[shape > 4] <- -s1 + s2 - s3 + s4
return(kurtosis)
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(actuar::dllogis,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
MoreArgs = list(x = x, log = log)
)
} else {
actuar::dllogis(x, shape = self$getParameterValue("shape"),
rate = self$getParameterValue("rate"), log = log)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(actuar::pllogis,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
MoreArgs = list(q = x, lower.tail = lower.tail, log.p = log.p)
)
} else {
actuar::pllogis(x,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(actuar::qllogis,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
MoreArgs = list(p = p, lower.tail = lower.tail, log.p = log.p)
)
} else {
actuar::qllogis(p,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("shape"))) {
mapply(actuar::rllogis,
shape = self$getParameterValue("shape"), rate = self$getParameterValue("rate"),
MoreArgs = list(n = n)
)
} else {
actuar::rllogis(n, shape = self$getParameterValue("shape"),
rate = self$getParameterValue("rate"))
}
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "LLogis", ClassName = "Loglogistic",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "actuar", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.