Nothing
# nolint start
#' @name NegativeBinomial
#' @template SDist
#' @templateVar ClassName NegativeBinomial
#' @templateVar DistName Negative Binomial
#' @templateVar uses to model the number of successes, trials or failures before a given number of failures or successes
#' @templateVar params number of failures before successes, \eqn{n}, and probability of success, \eqn{p},
#' @templateVar pdfpmf pmf
#' @templateVar pdfpmfeq \deqn{f(x) = C(x + n - 1, n - 1) p^n (1 - p)^x}
#' @templateVar paramsupport \eqn{n = {0,1,2,\ldots}} and probability \eqn{p}, where \eqn{C(a,b)} is the combination (or binomial coefficient) function
#' @templateVar distsupport \eqn{{0,1,2,\ldots}} (for fbs and sbf) or \eqn{{n,n+1,n+2,\ldots}} (for tbf and tbs) (see below)
#' @templateVar default size = 10, prob = 0.5, form = "fbs"
# nolint end
#' @details
#' The Negative Binomial distribution can refer to one of four distributions (forms):
#'
#' 1. The number of failures before K successes (fbs)
#' 2. The number of successes before K failures (sbf)
#' 3. The number of trials before K failures (tbf)
#' 4. The number of trials before K successes (tbs)
#'
#' For each we refer to the number of K successes/failures as the \code{size} parameter.
#'
#' @template param_prob
#' @template param_qprob
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template field_packages
#'
#' @family discrete distributions
#' @family univariate distributions
#'
#' @export
NegativeBinomial <- R6Class("NegativeBinomial",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "NegativeBinomial",
short_name = "NBinom",
description = "Negative Binomial Probability Distribution.",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param size `(integer(1))`\cr
#' Number of trials/successes.
#' @param mean `(numeric(1))`\cr
#' Mean of distribution, alternative to `prob` and `qprob`.
#' @param form `character(1))`\cr
#' Form of the distribution, cannot be changed after construction. Options are to model
#' the number of,
#' * `"fbs"` - Failures before successes.
#' * `"sbf"` - Successes before failures.
#' * `"tbf"` - Trials before failures.
#' * `"tbs"` - Trials before successes.
#' Use `$description` to see the Negative Binomial form.
initialize = function(size = NULL, prob = NULL, qprob = NULL, mean = NULL,
form = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Set$new(), # temp, see below
type = Naturals$new()
)
form <- self$getParameterValue("form")
if (form == "fbs") {
private$.properties$support <- Naturals$new()
self$description <- "Negative Binomial (fbs) Probability Distribution."
} else if (form == "sbf") {
private$.properties$support <- Naturals$new()
self$description <- "Negative Binomial (sbf) Probability Distribution."
} else if (form == "tbf") {
private$.properties$support <- Interval$new(self$getParameterValue("size"), Inf,
type = "[)", class = "integer")
self$description <- "Negative Binomial (tbf) Probability Distribution."
} else {
private$.properties$support <- Interval$new(self$getParameterValue("size"), Inf,
type = "[)", class = "integer")
self$description <- "Negative Binomial (tbs) Probability Distribution."
}
invisible(self)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
unlist(self$getParameterValue("mean"))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
form <- self$getParameterValue("form")[[1]]
size <- unlist(self$getParameterValue("size"))
prob <- unlist(self$getParameterValue("prob"))
qprob <- 1 - prob
if (form %in% c("sbf", "tbf")) {
p <- prob
q <- qprob
} else {
p <- qprob
q <- prob
}
mode <- numeric(length(size))
mode[size > 1] <- floor(((size - 1) * p) / q)
if (form %in% c("tbf", "tbs")) {
mode[size > 1] <- mode[size > 1] + size[size > 1]
}
return(mode)
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
form <- self$getParameterValue("form")[[1]]
size <- unlist(self$getParameterValue("size"))
prob <- unlist(self$getParameterValue("prob"))
qprob <- 1 - prob
if (form %in% c("sbf", "tbf")) {
return(size * prob / (qprob^2))
} else {
return(size * qprob / (prob^2))
}
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
form <- self$getParameterValue("form")[[1]]
size <- unlist(self$getParameterValue("size"))
prob <- unlist(self$getParameterValue("prob"))
qprob <- 1 - prob
if (form %in% c("sbf", "tbf")) {
return((1 + prob) / sqrt(size * prob))
} else {
return((1 + qprob) / sqrt(size * qprob))
}
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
form <- self$getParameterValue("form")[[1]]
size <- unlist(self$getParameterValue("size"))
prob <- unlist(self$getParameterValue("prob"))
qprob <- 1 - prob
if (form %in% c("sbf", "tbf")) {
exkurtosis <- (qprob^2 - 6 * qprob + 6) / (size * prob)
} else {
exkurtosis <- (prob^2 - 6 * prob + 6) / (size * qprob)
}
if (excess) {
return(exkurtosis)
} else {
return(exkurtosis + 3)
}
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
form <- self$getParameterValue("form")
size <- self$getParameterValue("size")
prob <- self$getParameterValue("prob")
qprob <- 1 - prob
if (t < -log(prob)) {
if (form %in% c("sbf", "tbf")) {
return((qprob / (1 - prob * exp(t)))^size)
} else {
return((prob / (1 - qprob * exp(t)))^size)
}
} else {
return(NaN)
}
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
form <- self$getParameterValue("form")
size <- self$getParameterValue("size")
prob <- self$getParameterValue("prob")
qprob <- 1 - prob
if (form %in% c("sbf", "tbf")) {
return((qprob / (1 - prob * exp(t * 1i)))^size)
} else {
return((prob / (1 - qprob * exp(t * 1i)))^size)
}
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
form <- self$getParameterValue("form")
size <- self$getParameterValue("size")
prob <- self$getParameterValue("prob")
qprob <- 1 - prob
if (abs(z) < 1 / prob) {
if (form == "sbf") {
return((qprob / (1 - prob * z))^size)
} else if (form == "tbs") {
return(((prob * z) / (1 - qprob * z))^size)
} else if (form == "fbs") {
return((prob / (1 - qprob * z))^size)
} else if (form == "tbf") {
return(((qprob * z) / (1 - prob * z))^size)
}
} else {
return(NaN)
}
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
form <- self$getParameterValue("form")[[1]]
prop <- super$properties
if (form == "tbf" | form == "tbs") {
prop$support <- Interval$new(self$getParameterValue("size"),
Inf, type = "[)", class = "integer")
}
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
size <- unlist(self$getParameterValue("size"))[[1]]
prob <- unlist(self$getParameterValue("prob"))
form <- self$getParameterValue("form")[[1]]
if (form %in% c("sbf", "tbf")) {
prob <- 1 - prob
}
if (form %in% c("tbs", "tbf")) {
x <- x - size
}
return(
call_C_base_pdqr(
fun = "dnbinom",
x = x,
args = list(
size = size,
prob = prob
),
log = log,
vec = test_list(self$getParameterValue("size"))
)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
size <- unlist(self$getParameterValue("size"))[[1]]
prob <- unlist(self$getParameterValue("prob"))
form <- self$getParameterValue("form")[[1]]
if (form %in% c("sbf", "tbf")) {
prob <- 1 - prob
}
if (form %in% c("tbs", "tbf")) {
x <- x - size
}
return(
call_C_base_pdqr(
fun = "pnbinom",
x = x,
args = list(
size = size,
prob = prob
),
log = log.p,
lower.tail = lower.tail,
vec = test_list(self$getParameterValue("size"))
)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
size <- unlist(self$getParameterValue("size"))[[1]]
prob <- unlist(self$getParameterValue("prob"))
form <- self$getParameterValue("form")[[1]]
if (form %in% c("sbf", "tbf")) {
prob <- 1 - prob
}
quantile <- call_C_base_pdqr(
fun = "qnbinom",
x = p,
args = list(
size = size,
prob = prob
),
log = log.p,
lower.tail = lower.tail,
vec = test_list(self$getParameterValue("size"))
)
if (form %in% c("tbs", "tbf")) {
quantile <- quantile + size
}
return(quantile)
},
.rand = function(n) {
size <- unlist(self$getParameterValue("size"))[[1]]
prob <- unlist(self$getParameterValue("prob"))
form <- self$getParameterValue("form")[[1]]
if (form %in% c("sbf", "tbf")) {
prob <- 1 - prob
}
rand <- call_C_base_pdqr(
fun = "rnbinom",
x = n,
args = list(
size = size,
prob = prob
),
log = log.p,
lower.tail = lower.tail,
vec = test_list(self$getParameterValue("size"))
)
if (form %in% c("tbs", "tbf")) {
rand <- rand + size
}
return(rand)
},
# traits
.traits = list(valueSupport = "discrete", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "NBinom", ClassName = "NegativeBinomial",
Type = "\u21150", ValueSupport = "discrete",
VariateForm = "univariate",
Package = "-", Tags = "limits"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.