Nothing
# nolint start
#' @name Triangular
#' @template SDist
#' @aliases SymmetricTriangular
#' @templateVar ClassName Triangular
#' @templateVar DistName Triangular
#' @templateVar uses to model population data where only the minimum, mode and maximum are known (or can be reliably estimated), also to model the sum of standard uniform distributions
#' @templateVar params lower limit, \eqn{a}, upper limit, \eqn{b}, and mode, \eqn{c},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \cr\cr \eqn{f(x) = 0, x < a} \cr \eqn{f(x) = 2(x-a)/((b-a)(c-a)), a \le x < c} \cr \eqn{f(x) = 2/(b-a), x = c} \cr \eqn{f(x) = 2(b-x)/((b-a)(b-c)), c < x \le b} \cr \eqn{f(x) = 0, x > b}
#' @templateVar paramsupport \eqn{a,b,c \ \in \ R}{a,b,c \epsilon R}, \eqn{a \le c \le b}
#' @templateVar distsupport \eqn{[a, b]}
#' @templateVar default lower = 0, upper = 1, mode = 0.5, symmetric = FALSE
# nolint end
#'
#' @template param_lower
#' @template param_upper
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template method_setParameterValue
#' @template param_decorators
#' @template field_packages
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @export
Triangular <- R6Class("Triangular",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Triangular",
short_name = "Tri",
description = "Triangular Probability Distribution.",
packages = "extraDistr",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param mode `(numeric(1))`\cr
#' Mode of the distribution, if `symmetric = TRUE` then determined automatically.
#' @param symmetric `(logical(1))`\cr
#' If `TRUE` then the symmetric Triangular distribution is constructed, where the `mode` is
#' automatically calculated. Otherwise `mode` can be set manually. Cannot be changed after
#' construction.
#'
#' @examples
#' Triangular$new(lower = 2, upper = 5, symmetric = TRUE)
#' Triangular$new(lower = 2, upper = 5, mode = 4, symmetric = FALSE)
#'
#' # You can view the type of Triangular distribution with $description
#' Triangular$new(symmetric = TRUE)$description
#' Triangular$new(symmetric = FALSE)$description
initialize = function(lower = NULL, upper = NULL, mode = NULL, symmetric = NULL,
decorators = NULL) {
super$initialize(
decorators = decorators,
support = Interval$new(0, 1),
type = Reals$new(),
symmetry = "sym"
)
if (self$getParameterValue("symmetric")) {
private$.type <- "symmetric"
self$description <- "Symmetric Triangular Probability Distribution."
} else {
self$description <- "Triangular Probability Distribution."
}
invisible(self)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
(unlist(self$getParameterValue("lower")) + unlist(self$getParameterValue("upper")) +
unlist(self$getParameterValue("mode"))) / 3
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
unlist(self$getParameterValue("mode"))
},
#' @description
#' Returns the median of the distribution. If an analytical expression is available
#' returns distribution median, otherwise if symmetric returns `self$mean`, otherwise
#' returns `self$quantile(0.5)`.
median = function() {
lower <- unlist(self$getParameterValue("lower"))
upper <- unlist(self$getParameterValue("upper"))
mode <- unlist(self$getParameterValue("mode"))
median <- numeric(length(lower))
ind <- mode >= (lower + upper) / 2
median[ind] <- lower[ind] + sqrt((upper[ind] - lower[ind]) * (mode[ind] - lower[ind])) /
sqrt(2)
median[!ind] <- upper[!ind] - sqrt((upper[!ind] - lower[!ind]) * (upper[!ind] - mode[!ind])) /
sqrt(2)
return(median)
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
lower <- unlist(self$getParameterValue("lower"))
upper <- unlist(self$getParameterValue("upper"))
mode <- unlist(self$getParameterValue("mode"))
return((lower^2 + upper^2 + mode^2 - lower * upper - lower * mode - upper * mode) / 18)
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
lower <- unlist(self$getParameterValue("lower"))
upper <- unlist(self$getParameterValue("upper"))
mode <- unlist(self$getParameterValue("mode"))
num <- sqrt(2) * (lower + upper - 2 * mode) * (2 * lower - upper - mode) *
(lower - 2 * upper + mode)
den <- 5 * (lower^2 + upper^2 + mode^2 - lower * upper - lower * mode - upper * mode)^1.5
return(num / den)
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
if (excess) {
return(rep(-0.6, length(self$getParameterValue("lower"))))
} else {
return(rep(2.4, length(self$getParameterValue("lower"))))
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
0.5 * log((unlist(self$getParameterValue("upper")) -
unlist(self$getParameterValue("lower"))) / 2, base)
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
lower <- self$getParameterValue("lower")
upper <- self$getParameterValue("upper")
mode <- self$getParameterValue("mode")
num <- 2 * ((upper - mode) * exp(lower * t) - (upper - lower) * exp(mode * t) + (mode - lower)
* exp(upper * t))
den <- (upper - lower) * (mode - lower) * (upper - mode) * t^2
return(num / den)
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
lower <- self$getParameterValue("lower")
upper <- self$getParameterValue("upper")
mode <- self$getParameterValue("mode")
num <- -2 * ((upper - mode) * exp(1i * lower * t) - (upper - lower) * exp(1i * mode * t) +
(mode - lower) * exp(1i * upper * t))
den <- (upper - lower) * (mode - lower) * (upper - mode) * t^2
return(num / den)
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
active = list(
#' @field properties
#' Returns distribution properties, including skewness type and symmetry.
properties = function() {
lower <- self$getParameterValue("lower")
upper <- self$getParameterValue("upper")
prop <- super$properties
prop$support <- Interval$new(lower, upper)
if (private$.type != "symmetric") {
if (self$getParameterValue("mode") == (lower + upper) / 2) {
prop$symmetry <- "symmetric"
} else {
prop$symmetry <- "asymmetric"
}
}
prop
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("lower"))) {
mapply(
extraDistr::dtriang,
a = self$getParameterValue("lower"),
b = self$getParameterValue("upper"),
c = self$getParameterValue("mode"),
MoreArgs = list(x = x, log = log)
)
} else {
extraDistr::dtriang(
x,
a = self$getParameterValue("lower"),
b = self$getParameterValue("upper"),
c = self$getParameterValue("mode"),
log = log
)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("lower"))) {
mapply(
extraDistr::ptriang,
a = self$getParameterValue("lower"),
b = self$getParameterValue("upper"),
c = self$getParameterValue("mode"),
MoreArgs = list(
q = x,
lower.tail = lower.tail,
log.p = log.p
)
)
} else {
extraDistr::ptriang(
x,
a = self$getParameterValue("lower"),
b = self$getParameterValue("upper"),
c = self$getParameterValue("mode"),
lower.tail = lower.tail,
log.p = log.p
)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("lower"))) {
mapply(
extraDistr::qtriang,
a = self$getParameterValue("lower"),
b = self$getParameterValue("upper"),
c = self$getParameterValue("mode"),
MoreArgs = list(
p = p,
lower.tail = lower.tail,
log.p = log.p
)
)
} else {
extraDistr::qtriang(
p,
a = self$getParameterValue("lower"),
b = self$getParameterValue("upper"),
c = self$getParameterValue("mode"),
lower.tail = lower.tail,
log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("lower"))) {
mapply(
extraDistr::rtriang,
a = self$getParameterValue("lower"),
b = self$getParameterValue("upper"),
c = self$getParameterValue("mode"),
MoreArgs = list(n = n)
)
} else {
extraDistr::rtriang(
n,
a = self$getParameterValue("lower"),
b = self$getParameterValue("upper"),
c = self$getParameterValue("mode")
)
}
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate"),
.type = "asymmetric"
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Tri", ClassName = "Triangular",
Type = "\u211D", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "extraDistr", Tags = "limits"
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.