Nothing
#' @name Wald
#' @template SDist
#' @templateVar ClassName Wald
#' @templateVar DistName Wald
#' @templateVar uses for modelling the first passage time for Brownian motion
#' @templateVar params mean, \eqn{\mu}, and shape, \eqn{\lambda},
#' @templateVar pdfpmf pdf
#' @templateVar pdfpmfeq \deqn{f(x) = (\lambda/(2x^3\pi))^{1/2} exp((-\lambda(x-\mu)^2)/(2\mu^2x))}
#' @templateVar paramsupport \eqn{\lambda > 0} and \eqn{\mu > 0}
#' @templateVar distsupport the Positive Reals
#' @templateVar omittedDPQR \code{quantile}
#' @templateVar default mean = 1, shape = 1
#' @templateVar aka Inverse Normal
#' @aliases InverseNormal InverseGaussian
#'
#' @family continuous distributions
#' @family univariate distributions
#'
#' @details
#' Sampling is performed as per Michael, Schucany, Haas (1976).
#'
#' @references
#' Michael, J. R., Schucany, W. R., & Haas, R. W. (1976).
#' Generating random variates using transformations with multiple roots.
#' The American Statistician, 30(2), 88-90.
#'
#' @template class_distribution
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template param_shape
#' @template field_packages
#'
#' @export
Wald <- R6Class("Wald",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Wald",
short_name = "Wald",
description = "Wald Probability Distribution.",
packages = "extraDistr",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param mean `(numeric(1))`\cr
#' Mean of the distribution, location parameter, defined on the positive Reals.
initialize = function(mean = NULL, shape = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(),
type = PosReals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
unlist(self$getParameterValue("mean"))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
mean <- unlist(self$getParameterValue("mean"))
shape <- unlist(self$getParameterValue("shape"))
return(mean * ((1 + (9 * mean^2) / (4 * shape^2))^0.5 - (3 * mean) / (2 * shape)))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
unlist(self$getParameterValue("mean"))^3 / unlist(self$getParameterValue("shape"))
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
3 * (unlist(self$getParameterValue("mean")) / unlist(self$getParameterValue("shape")))^0.5
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
if (excess) {
return(15 * unlist(self$getParameterValue("mean")) /
unlist(self$getParameterValue("shape")))
} else {
return(15 * unlist(self$getParameterValue("mean")) /
unlist(self$getParameterValue("shape")) + 3)
}
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
mean <- self$getParameterValue("mean")
shape <- self$getParameterValue("shape")
return(exp(shape / mean * (1 - sqrt(1 - 2 * mean^2 * t / shape))))
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
mean <- self$getParameterValue("mean")
shape <- self$getParameterValue("shape")
return(exp(shape / mean * (1 - sqrt(1 - 2 * mean^2 * 1i * t / shape))))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
return(NaN)
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("mean"))) {
mapply(extraDistr::dwald,
mu = self$getParameterValue("mean"),
lambda = self$getParameterValue("shape"),
MoreArgs = list(x = x, log = log)
)
} else {
extraDistr::dwald(x,
mu = self$getParameterValue("mean"),
lambda = self$getParameterValue("shape"),
log = log
)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("mean"))) {
mapply(
extraDistr::pwald,
mu = self$getParameterValue("mean"),
lambda = self$getParameterValue("shape"),
MoreArgs = list(q = x, lower.tail = lower.tail, log.p = log.p)
)
} else {
extraDistr::pwald(x,
mu = self$getParameterValue("mean"),
lambda = self$getParameterValue("shape"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("mean"))) {
mapply(extraDistr::rwald,
mu = self$getParameterValue("mean"),
lambda = self$getParameterValue("shape"),
MoreArgs = list(n = n)
)
} else {
extraDistr::rwald(n,
mu = self$getParameterValue("mean"),
lambda = self$getParameterValue("shape")
)
}
},
# traits
.traits = list(valueSupport = "continuous", variateForm = "univariate"),
.isQuantile = FALSE
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Wald", ClassName = "Wald",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "extraDistr", Tags = ""
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.